
Jakarta EE Platform, Enterprise Edition
10 Test Compatibility Kit User’s Guide,

Release 10 for Jakarta EE

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta
EE

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 1

Eclipse Foundation™

Jakarta Platform, Enterprise Edition 10 Test Compatibility Kit User's
Guide

Release 10 for Jakarta EE

May 2021

Provides detailed instructions for obtaining, installing, configuring,
and using the Eclipse Jakarta, Enterprise Edition 10 Compatibility Test
Suite for the Full Profile and the Web Profile.

[[sthref1]]

'''''

Jakarta Platform, Enterprise Edition 10 Test Compatibility Kit User's
Guide, Release 10 for Jakarta EE

Copyright © 2017, 2021 Oracle and/or its affiliates. All rights reserved.

Emeritus Author: Eric Jendrock

This program and the accompanying materials are made available under the terms of the
Eclipse Public License v. 2.0, which is available at
http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation.
All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD
Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX
is a registered trademark of The Open Group.

 References in this document to Java EE refer to the Jakarta EE unless otherwise
noted.

[[GBFTI]][[preface]]

Preface

2 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

Preface

[NOTE]
==

The Jakarta Enterprise Edition documentation is part of the Jakarta Enterprise
Edition contribution to the Eclipse Foundation and is not intended for
use in relation to Java Enterprise Edition or Java Licensee
requirements. This documentation is in the process of being revised to
reflect the new Jakarta EE requirements and branding.
Additional changes will be made as requirements and procedures evolve
for Jakarta EE. Where applicable, references to Java EE or Java
Enterprise Edition should be considered references to Jakarta EE.

Please see the Title page for additional license information.
==

This book introduces the Test Compatibility Kit (TCK) for the Jakarta
Platform, Enterprise Edition 10 (Jakarta EE 10) and Jakarta Platform, Enterprise
Edition 10 Web Profile (Jakarta EE 10 Web Profile), and explains how to
configure and run the test suite. It also provides information for
troubleshooting problems you may encounter as you run the test suite.

The Jakarta Platform, Enterprise Edition 10 Test Compatibility Kit (Jakarta
EE 10 TCK) is a portable, configurable automated test suite for verifying
the compatibility of an implementer's compliance with the Jakarta EE 10
Specification (hereafter referred to as the implementer's implementation, or VI).
The Jakarta EE 10 Platform TCK uses the JavaTest harness version 5.0 to run the
test suite.

[NOTE]
===

URLs are provided so you can locate resources quickly. However, these
URLs are subject to changes that are beyond the control of the authors
of this guide.

===

[[GBFUS]][[who-should-use-this-book]]

Who Should Use This Book
~~~~~~~~~~~~~~~~~~~~~~~~

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    3



This guide is for developers of the Jakarta EE 10 technology to assist them
in running the test suite that verifies compatibility of their
implementation of the Jakarta EE 10 Specification.

[[GJFXS]][[before-you-read-this-book]]

Before You Read This Book
~~~~~~~~~~~~~~~~~~~~~~~~~

Before reading this guide, you should familiarize yourself with the Java
programming language, the Jakarta Platform, Enterprise Edition 10 (Jakarta EE
9) Specification, and the JavaTest documentation.

The Jakarta Platform, Enterprise Edition 10 (Jakarta EE 10) Specification can be
downloaded from `https://projects.eclipse.org/projects/ee4j.jakartaee-platform`.

For documentation on the test harness used for running the Jakarta EE 10 Platform TCK
test suite, see
`https://wiki.openjdk.java.net/display/CodeTools/Documentation`.

[[GBFWF]][[typographic-conventions]]

Typographic Conventions
~~~~~~~~~~~~~~~~~~~~~~~

The following table describes the typographic conventions that are used
in this book.

[width="100%",cols="15%,40%,45%",options="header",]
|=======================================================================
|Convention |Meaning |Example
|Boldface |Boldface type indicates graphical user interface elements
associated with an action, terms defined in text, or what you type,
contrasted with onscreen computer output. a|
From the File menu, select Open Project.

A cache is a copy that is stored locally.

[source,oac_no_warn]
----
machine_name% su
Password:
----

|`Monospace` |Monospace type indicates the names of files and
directories, commands within a paragraph, URLs, code in examples, text
that appears on the screen, or text that you enter. a|

Preface

4    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



Edit your `.login` file.

Use `ls` `-a` to list all files.

`machine_name% you have mail.`

|Italic |Italic type indicates book titles, emphasis, or placeholder
variables for which you supply particular values. a|
Read Chapter 6 in the User's Guide.

Do not save the file.

The command to remove a file is `rm` filename.

|=======================================================================

[[FWBSD]][[shell-prompts-in-command-examples]]

Shell Prompts in Command Examples
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following table shows the default UNIX system prompt and superuser
prompt for the C shell, Bourne shell, and Korn shell.

[width="100%",cols="50%,50%",options="header",]
|===
|Shell |Prompt
|C shell |`machine_name%`
|C shell for superuser |`machine_name#`
|Bourne shell and Korn shell |`$` +
|Bourne shell and Korn shell for superuser |`#` +
|Bash shell |`shell_name-shell_version$`
|Bash shell for superuser |`shell_name-shell_version#`
|===

[[GBFOW]][[introduction]]

1 Introduction

This document provides instructions for installing, configuring, and
running the Jakarta Platform, Enterprise Edition 10 Test Compatibility Kit
(Jakarta EE 10 Platform TCK).

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 5

This chapter includes the following topics:

* link:#GBFTK[Compatibility Testing]
* link:#GEUYK[About Jakarta EE 10 Platform TCK]
* link:#GEVAD[Hardware Requirements]
* link:#GEVBB[Software Requirements]
* link:#GEVCL[Additional Jakarta EE 10 Platform TCK Requirements]
* link:#GBFQW[Getting Started With the Jakarta EE 10 Platform TCK Test Suite]

[[GBFTK]][[compatibility-testing]]

1.1 Compatibility Testing
~~~~~~~~~~~~~~~~~~~~~~~~~

Compatibility testing differs from traditional product testing in a
number of ways. The focus of compatibility testing is to test those
features and areas of an implementation that are likely to differ across
other implementations, such as those features that:

* Rely on hardware or operating system-specific behavior
* Are difficult to port
* Mask or abstract hardware or operating system behavior

Compatibility test development for a given feature relies on a complete
specification and compabitle implementation for that feature.
Compatibility testing is not primarily concerned with robustness,
performance, or ease of use.

[[GBFQN]][[why-compatibility-testing-is-important]]

1.1.1 Why Compatibility Testing is Important
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Jakarta Platform compatibility is important to different groups involved
with Jakarta technologies for different reasons:

* Compatibility testing ensures that the Jakarta Platform does not become
fragmented as it is ported to different operating systems and hardware
environments.

* Compatibility testing benefits developers working in the Java
programming language, allowing them to write applications once and then
to deploy them across heterogeneous computing environments without
porting.

* Compatibility testing allows application users to obtain applications
from disparate sources and deploy them with confidence.

Preface

6    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



* Conformance testing benefits Jakarta Platform implementors by ensuring a
level playing field for all Jakarta Platform ports.

[[GBFPR]][[compatibility-rules]]

1.1.2 Compatibility Rules
^^^^^^^^^^^^^^^^^^^^^^^^^

Compatibility criteria for all technology implementations are embodied
in the Compatibility Rules that apply to a specified technology. The
Jakarta EE 10 Platform TCK tests for adherence to these Rules as described in
link:rules.html#GBFSN[Chapter 2, "Procedure for Jakarta Platform, Enterprise
Edition 10 Certification,"] for Jakarta EE 10 and
link:rules-wp.html#GJJPZ[Chapter 3, "Procedure for Jakarta Platform,
Enterprise Edition 10 Web Profile Certification,"] for Jakarta EE 10 Web
Profile.

[[GBFPW]][[tck-overview]]

1.1.3 TCK Overview
^^^^^^^^^^^^^^^^^^

A Jakarta EE 10 Platform TCK is a set of tools and tests used to verify that a
Implementer's implementation of Jakarta EE 10 technology conforms to the
applicable specification. All tests in the TCK are based on the written
specifications for the Jakarta Platform. The TCK tests compatibility of a
Implementer's implementation of a technology to the applicable
specification of the technology. Compatibility testing is a means of
ensuring correctness, completeness, and consistency across all
implementations developed by technology Implementers.

The set of tests included with the Jakarta EE 10 Platform TCK is called the test
suite. All tests in the TCK test suite are self-checking, but some tests
may require tester interaction. Most tests return either a Pass or Fail
status. For a given platform to be certified, all of the required tests
must pass. The definition of required tests may change from platform to
platform.

The definition of required tests will change over time. Before your
final certification test pass, be sure to download the latest Exclude
List for the Jakarta EE 10 Platform TCK. The definition of required tests will change
over time. See link:#GEUYQ[Section 1.2.5, "Exclude Lists,"] for more
information.

[[GBFPB]][[jakarta-community-community-process-program-and-compatibility-testing]]

1.1.4 Jakarta Specification Community Process Program and Compatibility Testing

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    7



^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Jakarta EE Specification Process (JESP) program is the
formalization of the open process that has been used since 2019 to
develop and revise Jakarta EE technology specifications in cooperation
with the international Jakarta EE community. The JESP program specifies
that the following three major components must be included as
deliverables in a final Jakarta EE technology release under the
direction of the responsible specification project committer group:

* Technology Specification
* A Compatible Implementation
* Technology Compatibility Kit (TCK)

For further information about the JESP program, go to Jakarta EE
Specification Process community page (https://jakarta.ee/specifications).

[[GEUYK]][[about-jakarta-ee-10-platform-tck]]

1.2 About Jakarta EE 10 Platform TCK
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Jakarta EE 10 Platform TCK is a portable, configurable, automated test suite for
verifying the compliance of a Implementer's implementation of the Jakarta EE 10
technologies. Jakarta EE 10 Platform TCK includes version 5.0 of the JavaTest
harness.

For documentation on the test harness used for running the Jakarta EE 10 Platform TCK
test suite, see
`https://wiki.openjdk.java.net/display/CodeTools/Documentation`.

[[sthref4]][[jakarta-ee-10-technologies-tested-with-jakarta-ee-10-platform-tck]]

1.2.1 Jakarta EE 10 Technologies Tested with Jakarta EE 10 Platform TCK
^^^

The Jakarta EE 10 Platform TCK test suite includes compatibility tests for the
following required and optional Jakarta EE 10 technologies:

* Jakarta Enterprise Beans 4.0 +
* Jakarta Server Pages 3.1
* Jakarta Servlet 6.0
* Jakarta Expression Language 5.0
* Jakarta Messaging 3.0
* Jakarta Transactions 2.0
* Jakarta Mail 2.0
* Jakarta Connectors 2.0
* Jakarta Enterprise Web Services 2.0 (optional)

Preface

8 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

* Jakarta RESTful Web Services 3.0
* Jakarta WebSocket 2.1
* Jakarta JSON Processing 2.0
* Jakarta JSON Binding 2.0
* Jakarta Concurrency 2.0
* Jakarta Authorization 2.0
* Jakarta Authentication 2.0
* Jakarta Standard Tag Library 2.0
* Jakarta Faces 3.0
* Jakarta Security 2.0
* Jakarta Annotations 2.0
* Jakarta Persistence 3.0
* Jakarta Bean Validation 3.0
* Jakarta Managed Beans 2.0
* Jakarta Interceptors 2.0
* Jakarta Contexts and Dependency Injection 3.0
* Jakarta Dependency Injection 2.0
* Jakarta Debugging Support for Other Languages 2.0
* Jakarta Enterprise Beans 3.2 and earlier entity beans and associated Jakarta
Enterprise Beans QL (optional)
* Jakarta Enterprise Beans 2.x API group (optional)
* Jakarta Enterprise Web Services 2.0 (optional)
* Jakarta SOAP with Attachments 2.0 (optional)
* Jakarta Web Services Metadata 3.0 (optional)
* Jakarta XML Web Services 3.0 (optional)

[[BHCGFHDI]][[jakarta-ee-10-web-profile-technologies-tested-with-jakarta-ee-10-
platform-tck]]

1.2.2 Jakarta EE 10 Web Profile Technologies Tested With Jakarta EE 10 Platform TCK
^^^

The Jakarta EE 10 Platform TCK test suite can also be used to test compatibility for
the following required Jakarta EE 10 Web Profile technologies:

* Jakarta Server Pages 3.1
* Jakarta Servlet 6.0
* Jakarta Expression Language 5.0
* Jakarta Standard Tag Library 2.0
* Jakarta Faces 3.0
* Jakarta RESTful Web Services 3.0
* Jakarta WebSocket 2.1
* Jakarta JSON Processing 2.0
* Jakarta JSON Binding 2.0
* Jakarta Common Annotations 2.0
* Jakarta Enterprise Beans 4.0, Lite
* Jakarta Transactions 2.0

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 9

* Jakarta Persistence 3.0
* Jakarta Bean Validation 3.0
* Jakarta Managed Beans 2.0
* Jakarta Interceptors 2.0
* Jakarta Contexts and Dependency Injection 3.0
* Jakarta Dependency Injection 2.0
* Jakarta Security 2.0
* Jakarta Authentication 2.0, Servlet Container Profile
* Jakarta Debugging Support for Other Languages 2.0

[[GEUZS]][[tck-tests]]

1.2.3 TCK Tests
^^^^^^^^^^^^^^^

The Jakarta EE 10 Platform TCK contains API tests and enterprise edition tests, which
are tests that start in the Jakarta EE 10 platform and use the underlying
enterprise service or services as specified. For example, a JDBC
enterprise edition test connects to a database, uses SQL commands and
the JDBC 4.2 API to populate the database tables with data, queries the
database, and compares the returned results against the expected
results.

[[GEUZU]]

.*Figure 1-1 Typical Jakarta Platform, Enterprise Edition Workflow*
image:img/overviewa.png["Typical Jakarta Platform, Enterprise Edition Workflow"]

Note: References in diagram to Java EE refer to Jakarta EE.

link:#GEUZU[Figure 1-1] shows how most Implementers will use the test
suite. They will set up and run the test suite with the Jakarta Platform,
Enterprise Edition 10 Compatible Implementation (Jakarta EE 10 CI) first to
become familiar with the testing process. Then they will set up and run
the test suite with their own Jakarta EE 10 implementation. This is called the
Vendor Implementation, or VI in this document. When they pass
all of the tests, they will apply for and be granted certification.

* Before you do anything with the test suite, read the rules in
link:rules.html#GBFSN[Chapter 2, "Procedure for Jakarta Platform, Enterprise
Edition 8 Certification,"] or link:rules-wp.html#GJJPZ[Chapter 3,
"Procedure for Jakarta Platform, Enterprise Edition 10 Web Profile
Certification."] These chapters explain the certification process and
provides a definitive list of certification rules for Jakarta EE 10 and Jakarta
EE 10 Web Profile implementations.
* Next, take a look at the test assertions in the Assertion List, which
you can find in the Jakarta EE 10 Platform TCK documentation bundle. The assertions
explain what each test is testing. When you run the tests with the

Preface

10 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

JavaTest GUI, the assertion being tested as part of the test description
of the currently selected test is displayed.
* Third, install and configure the Jakarta EE 10 Platform TCK software and the
Jakarta
EE 10 CI or Jakarta EE 10 Web Profile CI and run the tests as described in
this guide. This will familiarize you with the testing process.
* Finally, set up and run the test suite with your own Jakarta EE 10 or Jakarta
EE 10 Web Profile implementation.

[NOTE]
===

In the instructions in this document, variables in angle brackets need
to be expanded for each platform. For example, `<TS_HOME>` becomes
`$TS_HOME` on Solaris/Linux and `%TS_HOME%` on Windows. In addition, the
forward slashes (`/`) used in all of the examples need to be replaced
with backslashes (`\`) for Windows.

===

[[GEUYR]][[javatest-harness]]

1.2.4 JavaTest Harness
^^^^^^^^^^^^^^^^^^^^^^

The JavaTest harness version 5.0 is a set of tools designed to run and
manage test suites on different Java platforms. The JavaTest harness can
be described as both a Java application and a set of compatibility
testing tools. It can run tests on different kinds of Java platforms and
it allows the results to be browsed online within the JavaTest GUI, or
offline in the HTML reports that the JavaTest harness generates.

The JavaTest harness includes the applications and tools that are used
for test execution and test suite management. It supports the following
features:

* Sequencing of tests, allowing them to be loaded and executed
automatically
* Graphic user interface (GUI) for ease of use
* Automated reporting capability to minimize manual errors
* Failure analysis
* Test result auditing and auditable test specification framework
* Distributed testing environment support

To run tests using the JavaTest harness, you specify which tests in the
test suite to run, how to run them, and where to put the results as

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 11

described in link:using.html#GBFWO[Chapter 7, "Executing Tests."]

The tests that make up the TCK are precompiled and indexed within the
TCK test directory structure. When a test run is started, the JavaTest
harness scans through the set of tests that are located under the
directories that have been selected. While scanning, the JavaTest
harness selects the appropriate tests according to any matches with the
filters you are using and queues them up for execution.

[[GEUYQ]][[exclude-lists]]

1.2.5 Exclude Lists
^^^^^^^^^^^^^^^^^^^

The Jakarta EE 10 Platform TCK includes an Exclude List contained in a `.jtx` file.
This is a list of test file URLs that identify tests which do not have
to be run for the specific version of the TCK being used. Whenever tests
are run, the JavaTest harness automatically excludes any test on the
Exclude List from being executed.

A implementor is not required to pass or run any test on the Exclude List.
The Exclude List file, `<TS_HOME>/bin/ts.jtx`, is included in the Jakarta
EE 10 TCK.

[NOTE]
===

Always make sure you are using an up-to-date copy of the Exclude List
before running the Jakarta EE 10 Platform TCK test suite to verify your
implementation.

===

A test might be in the Exclude List for reasons such as:

* An error in an underlying implementation API has been discovered which
does not allow the test to execute properly.
* An error in the specification that was used as the basis of the test
has been discovered.
* An error in the test itself has been discovered.
* The test fails due to a bug in the tools (such as the JavaTest
harness, for example).

In addition, all tests are run against the compatible implementations.
Any tests that cannot be run on a compatible Jakarta Platform may be put on the
Exclude List if the Specification project team agrees the test is invalid.

Preface

12 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

Any test that is not specification-based, or for which the
specification is vague, may be excluded. Any test that is found to be
implementation dependent (based on a particular thread scheduling model,
based on a particular file system behavior, and so on) may be excluded.

[NOTE]
===

Implementers are not permitted to alter or modify Exclude Lists. Changes to
an Exclude List can only be made by using the procedure described in
link:rules.html#CJAICHHD[Section 2.3.1, "Jakarta Platform, Enterprise
Edition TCK Test Appeals Steps,"] and
link:rules-wp.html#CEGCHJGH[Section 3.3.1, "Jakarta Platform, Enterprise
Edition TCK Test Appeals Steps."]

===

[[GEUZN]][[apache-ant]]

1.2.6 Apache Ant
^^^^^^^^^^^^^^^^

The Jakarta EE 10 CI, Jakarta EE 10 Web Profile CI, and Jakarta EE 10 Platform TCK
require
implementations of Apache Ant 1.9.7 from the Apache Ant Project
(`http://ant.apache.org/`). Apache Ant is a free, open-source,
Java-based build tool, similar in some ways to the make tool, but more
flexible, cross-platform compatible, and centered around XML-based
configuration files.

Ant is invoked in the Jakarta EE 10 CI, Jakarta EE 10 Web Profile CI, and Jakarta
EE 10 TCK in conjunction with various XML files containing Ant targets.
These Ant targets provide a convenient way to automate various
configuration tasks for Jakarta EE 10 Platform TCK. For example, the initial
configuration of the Jakarta EE 10 CI or Jakarta EE 10 Web Profile CI for TCK is
done by means of the `config.vi` Ant target.

The Ant configuration targets are there for your convenience. When
configuring your Jakarta EE 10 or Jakarta EE 10 Web Profile implementation for
the Jakarta EE 10 Platform TCK, you can either set up your environment to use the Ant
tools, or you can perform some or all of your configuration procedures
manually. Jakarta EE 10 Platform TCK includes the Ant Contrib package, and the tasks
included with Ant Contrib are used within the TCK build files. See
`http://ant-contrib.sourceforge.net/` for more information about Ant
Contrib.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 13

This User's Guide does not provide in-depth instruction on Ant internals
or how to configure Ant targets for your particular Jakarta EE 10 or Jakarta EE
8 Web Profile implementation. For complete information about Ant, refer
to the extensive documentation on the Apache Ant Project site. The
Apache Ant Manual is available at
`http://ant.apache.org/manual/index.html`.

Apache Ant is protected under the Apache Software, License 2.0, which is
is available on the Apache Ant Project license page at
`http://ant.apache.org/license.html`.

===== Installing Apache Ant

* Download the Apache Ant 1.9.7 binary bundle from the Apache Ant
 Project.
* Change to the directory in which you want to install Apache Ant and
 extract the bundle
* Set the `ANT_HOME` environment variable to point to the
 `apache-ant-<version>` directory
* Add `<ANT_HOME>/bin` directory to the environment variable `PATH`

[[GEVAD]][[hardware-requirements]]

1.3 Hardware Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~

The following section lists the hardware requirements for the Jakarta EE 10
TCK software, using the Jakarta EE 10 CI or Jakarta EE 10 Web Profile CI.
Hardware requirements for other compatible implementations will vary.

All systems should meet the following recommended hardware requirements:

* CPU running at 2.0 GHz or higher
* 4 GB of RAM or more
* 2 GB of swap space , if required
* 6 GB of free disk space for writing data to log files, the Jakarta EE 10
repository, and the database
* Network access to the Internet

[[GEVBB]][[software-requirements]]

1.4 Software Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~

You can run the Jakarta EE 10 Platform TCK software on platforms running the
Linux software that meet the following software requirements:

* Operating Systems:

Preface

14 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

** CentOS Linux 7

** Alpine Linux v3.12
* Java SE 8 (1.8) or 11
* Jakarta EE 10 CI or Jakarta EE 10 Web Profile CI
* Mail server that supports the IMAP and SMTP protocols
* One of the following databases:

** MySQL

** Apache Derby

[[GEVCL]][[additional-jakarta-ee-10-platform-tck-requirements]]

1.5 Additional Jakarta EE 10 Platform TCK Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In addition to the instructions and requirements described in this
document, all Jakarta EE 10 and Jakarta EE 10 Web Profile implementations must
also pass the standalone TCKs for the following technologies:

* Jakarta Batch 2.1
* Jakarta Contexts and Dependency Injection 3.0
* Jakarta Dependency Injection 2.0
* Jakarta Bean Validation 3.0
* Jakarta XML Binding 3.0

For more information about the Jakarta Batch technology,
see the specification at `https://jakarta.ee/specifications/batch/2.1/`

For more information about the Jakarta Contexts and Dependency Injection technology,
see the specification at `https://jakarta.ee/specifications/cdi/3.0/`

For more information about the Jakarta Dependency Injection,
see the specification at `https://jakarta.ee/specifications/dependency-
injection/2.0/`

For more information about the Jakarta Bean Validation technology, see the
specification at `https://jakarta.ee/specifications/bean-validation/3.0/`

For more information about the Jakarta XML Binding technology, see the
specification at `https://jakarta.ee/specifications/xml-binding/3.0/`

[[GBFQW]][[getting-started-with-the-jakarta-ee-10-platform-tck-test-suite]]

1.6 Getting Started With the Jakarta EE 10 Platform TCK Test Suite
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 15

Installing, configuring, and using the Jakarta EE 10 Platform TCK involves the
following general steps:

1. Download, install, and configure a Jakarta EE 10 CI or Jakarta EE 10 Web
Profile CI. For example Eclipse GlassFish 6.1.
2. Download and install the Jakarta EE 10 Platform TCK package.
3. Configure your database to work with your CI.
4. Configure TCK to work with your database and CI.
5. Run the TCK tests.

The remainder of this guide explains these steps in detail. If you just
want to get started quickly with the Jakarta EE 10 Platform TCK using the most basic
test configuration, refer to link:install.html#GBFTP[Chapter 4,
"Installation."]

Procedure for Jakarta Platform, Enterprise Edition 10.0 Certification
==

[[GBFSN]][[procedure-for-jakarta-platform-enterprise-edition-10.0-certification]]

2 Procedure for Jakarta Platform, Enterprise Edition 10.0 Certification
--

This chapter describes the compatibility testing procedure and
compatibility requirements for Jakarta Platform, Enterprise Edition Version
10.

This chapter contains the following sections:

* link:#CJACEHEF[Certification Overview]
* link:#CJAJFCJI[Compatibility Requirements]
* link:#CJACBJIB[Jakarta Platform, Enterprise Edition Version 10 Test
Appeals Process]
* link:#CJAHFAJE[Specifications for Jakarta Platform, Enterprise Edition
Version 10]
* link:#CJAHIGAB[Libraries for Jakarta Platform, Enterprise Edition Version
8]

[[CJACEHEF]][[certification-overview]]

2.1 Certification Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~

The certification process for Jakarta EE 10.0 consists of the
following activities:

* Install the appropriate version of the Technology Compatibility Kit

Preface

16    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



(TCK) and execute it in accordance with the instructions in this User's
Guide.
* Ensure that you meet the requirements outlined in
link:#CJAJFCJI[Section 2.2, "Compatibility Requirements,"] below.

* Certify to the Eclipse Foundation that you have finished
testing and that you meet all of the compatibility requirements,
as required by the Eclipse Foundation TCK License.

[[CJAJFCJI]][[compatibility-requirements]]

2.2 Compatibility Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The compatibility requirements for Jakarta EE 10.0 consist of meeting the
requirements set forth by the rules and associated definitions contained
in this section.

[[sthref6]][[definitions]]

2.2.1 Definitions
^^^^^^^^^^^^^^^^^

These definitions are for use only with these compatibility requirements
and are not intended for any other purpose.

[[sthref7]][[sthref8]]

===== Table 2-1 Definitions

[width="100%",cols="25%,75%",options="header",]
|===
|Term |Definition
|API Definition Product |A Product for which the only Java class files
contained in the product are those corresponding to the application
programming interfaces defined by the Specifications, and which is
intended only as a means for formally specifying the application
programming interfaces defined by the Specifications.

|Application |A collection of components contained in a single
application package (such as an EAR file or JAR file) and deployed at
the same time using a Deployment Tool.

|Computational Resource a|
A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at
a specific or minimum revision level so as to satisfy the requirements

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 17

of the Test Suite.

Examples of computational resources that may vary in quantity are RAM
and file descriptors.

Examples of computational resources that may vary in existence (that is,
may or may not exist) are graphics cards and device drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

|Configuration Descriptor |Any file whose format is well defined by a
specification and which contains configuration information for a set of
Java classes, archive, or other feature defined in the specification.

|Conformance Tests |All tests in the Test Suite for an indicated
Technology Under Test, as released and distributed by the
Eclipse Foundation, excluding those tests on the
published Exclude List for the Technology Under Test.

|Container |An implementation of the associated Libraries, as specified
in the Specifications, and a version of a Java Platform, Standard
Edition Runtime Product, as specified in the Specifications, or a later
version of a Java Platform, Standard Edition Runtime Product that also
meets these compatibility requirements.

|Deployment Tool |A tool used to deploy applications or components in a
Product, as described in the Specifications.

|Development Kit |A software product that implements or incorporates a
Compiler, a Schema Compiler, a Schema Generator, a Java-to-WSDL Tool, a
WSDL-to-Java Tool, and an RMI Compiler.

|Documented |Made technically accessible and made known to users,
typically by means such as marketing materials, product documentation,
usage messages, or developer support programs.

|Edition |A Version of the Java Platform. Editions include Java Platform
Standard Edition and Java Platform Enterprise Edition.

|Endorsed Standard |A Java API defined through a standards process other
than the Jakarta Enterprise Specification Process. The Endorsed Standard packages are
listed later in this chapter.

|Exclude List |The most current list of tests, released and distributed by the
Eclipse Foundation, that are not required to be passed to certify
conformance. The Jakarta EE Specification Committee may add to the Exclude List for
that

Preface

18 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

Test Suite as needed at any time, in which case the updated TCK version
supplants any previous Exclude Lists for that Test Suite.

|Java-to-WSDL Output |Output of a Java-to-WSDL Tool that is required for
Web service deployment and invocation.

|Java-to-WSDL Tool |A software development tool that implements or
incorporates a function that generates web service endpoint descriptions
in WSDL and XML schema format from Source Code as specified by the JAXWS
Specification.

|Jakarta Server Page |A text-based document that uses Jakarta Server Pages
technology.

|Jakarta Server Page Implementation Class |A program constructed by transforming
the Jakarta Server Page text into a Java language program using the transformation
rules described in the Specifications.

|Libraries a|
The class libraries, as specified through the Jakarta EE Specification Process
(JESP), for the Technology Under Test.

The Libraries for Jakarta Platform, Enterprise Edition Version 10 are listed
at the end of this chapter.

|Location Resource a|
A location of classes or native libraries that are components of the
test tools or tests, such that these classes or libraries may be
required to exist in a certain location in order to satisfy the
requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

|Maintenance Lead |The corresponding Jakarta EE Specification Project is
responsible for maintaining the Specification and the TCK for the
Technology. The Specification Project Team will propose revisions and
updates to the Jakarta EE Specification Committee which will approve and
release new versions of the specification and TCK. Eclipse Jakarta EE
Specification Committee is the Maintenance Lead for Jakarta Platform,
Enterprise Edition Version 10.

|Operating Mode a|
Any Documented option of a Product that can be changed by a user in
order to modify the behavior of the Product.

For example, an Operating Mode of a Runtime can be binary

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 19

(enable/disable optimization), an enumeration (select from a list of
localizations), or a range (set the initial Runtime heap size).

Note that an Operating Mode may be selected by a command line switch, an
environment variable, a GUI user interface element, a configuration or
control file, etc.

|Product |A vendor's product in which the Technology Under Test is
implemented or incorporated, and that is subject to compatibility
testing.

|Product Configuration a|
A specific setting or instantiation of an Operating Mode.

For example, a Product supporting an Operating Mode that permits user
selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

|Rebuildable Tests |Tests that must be built using an
implementation-specific mechanism. This mechanism must produce
specification defined artifacts. Rebuilding and running these tests
against a known compatible implementation verifies that the
mechanism generates compatible artifacts.

|Compatible Implementation (CI) |A verified compatible implementation
of a Specification.

|Resource |A Computational Resource, a Location Resource, or a Security
Resource.

|Rules |These definitions and rules in this Compatibility Requirements
section of this User's Guide.

|Runtime |The Containers specified in the Specifications.

|Security Resource a|
A security privilege or policy necessary for the proper execution of the
Test Suite.

For example, the user executing the Test Suite will need the privilege
to access the files and network resources necessary for use of the
Product.

|Specifications a|
The documents produced through the Jakarta EE Specification Process (JESP)
that define a particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in

Preface

20 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

this chapter.

|Technology |Specifications and one or more compatible implementations produced
through the Jakarta EE Specification Process (JESP).

|Technology Under Test |Specifications and a compatible implementation
for Jakarta Platform, Enterprise Edition Version 10.

|Test Suite |The requirements, tests, and testing tools distributed by
the Maintenance Lead as applicable to a given Version of the Technology.

|Version |A release of the Technology, as produced through the
Jakarta EE Specification Process (JESP).

|WSDL-to-Java Output |Output of a WSDL-to-Java tool that is required for
Web service deployment and invocation.

|WSDL-to-Java Tool |A software development tool that implements or
incorporates a function that generates web service interfaces for
clients and endpoints from a WSDL description as specified by the JAXWS
Specification.
|===

[[CJAFEGEH]][[rules-for-jakarta-platform-enterprise-edition-version-10.0-products]]

2.2.2 Rules for Jakarta Platform, Enterprise Edition Version 10 Products
^^^

The following rules apply for each implementation:

EE1 The Product must be able to satisfy all applicable compatibility
requirements, including passing all required TCK tests.

For example, if a Product provides distinct Operating Modes to optimize
performance, then that Product must satisfy all applicable compatibility
requirements for a Product in each Product Configuration, and
combination of Product Configurations, of those Operating Modes.

EE1.1 Each implementation must have at least one configuration that can be used to
pass
all required TCK Tests, although such configuration may need adjustment (e.g. whether
statically
or via administrative tooling).

EE1.2 An implementation may have mode(s) that provide compatibility with previous
Jakarta EE versions.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 21

EE1.3 An API Definition Product is exempt from all functional testing
requirements defined here, except the signature tests.

EE2 Some Conformance Tests may have properties that may be changed.
Properties that can be changed are identified in the configuration
interview. Properties that can be changed are identified in the JavaTest
Environment (.jte) files in the lib directory of the Test Suite
installation. Apart from changing such properties and other allowed
modifications described in this User's Guide (if any), no source or
binary code for a Conformance Test may be altered in any way without
prior written permission. Any such allowed alterations to the
Conformance Tests will be provided via the Jakarta EE Specification Project
website and apply to all vendor compatible implementations.

EE3 The testing tools supplied as part of the Test Suite or as
updated by the Maintenance Lead must be used to certify compliance.

EE4 The Exclude List associated with the Test Suite cannot be
modified.

EE5 The Maintenance Lead may define exceptions to these Rules. Such
exceptions would be made available as above, and will apply to all vendor
implementations.

EE6 All hardware and software component additions, deletions, and
modifications to a Documented supporting hardware/software platform,
that are not part of the Product but required for the Product to satisfy
the compatibility requirements, must be Documented and available to
users of the Product.

EE7 The Product must contain the full set of public and protected
classes and interfaces for all the Libraries. Those classes and
interfaces must contain exactly the set of public and protected methods,
constructors, and fields defined by the Specifications for those
Libraries. No subsetting, supersetting, or modifications of the public
and protected API of the Libraries are allowed except only as
specifically exempted by these Rules.

EE7.1 If a Product includes Technologies in addition to the
Technology Under Test, then it must contain the full set of combined
public and protected classes and interfaces. The API of the Product must
contain the union of the included Technologies. No further modifications
to the APIs of the included Technologies are allowed.

EE7.2 A Product may provide a newer version of an Endorsed Standard.
Upon request, the Maintenance Lead will make available alternate
Conformance Tests as necessary to conform with such newer version of an
Endorsed Standard. Such alternate tests will be made available to and

Preface

22 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

apply to all implementers. If a Product provides a newer version of an
Endorsed Standard, the version of the Endorsed Standard supported by the
Product must be Documented.

EE7.3 The Maintenance Lead may authorize the use of newer Versions of
a Technology included in the Technology Under Test. A Product that
provides a newer Version of a Technology must meet the Compatibility
Requirements for that newer Version, and must Document that it supports
the newer Version.

For example, the Jakarta Platform, Enterprise Edition Maintenance Lead
could authorize use of a newer version of a Java technology such as
Jakarta XML Web Services.

EE8 Except for tests specifically required by this TCK to be rebuilt
(if any), the binary Conformance Tests supplied as part of the Test
Suite or as updated by the Maintenance Lead must be used to certify
compliance.

EE9 The functional programmatic behavior of any binary class or
interface must be that defined by the Specifications.

EE9.1 A Product may contain Operating Modes that meet all of these
requirements, except Rule EE9, provided that:

. The Operating Modes must not violate the Java Platform, Standard
Edition Rules.
. Some Product Configurations of such Operating Modes may provide only
a subset of the functional programmatic behavior required by the
Specifications. The behavior of applications that use more than the
provided subset, when run in such Product Configurations, is
unspecified.
. The functional programmatic behavior of any binary class or
interface in the above defined subset must be that defined by the
Specifications.
. Any Product Configuration that invokes this rule must be clearly
Documented as not fully meeting the requirements of the Specifications.

EE10 Each Container must make technically accessible all Java SE
Runtime interfaces and functionality, as defined by the Specifications,
to programs running in the Container, except only as specifically
exempted by these Rules.

EE10.1 Containers may impose security constraints, as defined by the
Specifications.

EE11 A web Container must report an error, as defined by the
Specifications, when processing a Jakarta Server Page that does not conform to the

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 23

Specifications.

EE12 The presence of a Java language comment or Java language
directive in a Jakarta Server Page that specifies ”java” as the scripting language,
when processed by a web Container, must not cause the functional
programmatic behavior of that Jakarta Server Page to vary from the functional
programmatic behavior of that Jakarta Server Page in the absence of that Java
language comment or Java language directive.

EE13 The contents of any fixed template data (defined by the
Specifications) in a Jakarta Server Page, when processed by a web Container, must
not affect the functional programmatic behavior of that Jakarta Server Page, except
as defined by the Specifications.

EE14 The functional programmatic behavior of a Jakarta Server Page that
specifies ”java” as the scripting language must be equivalent to the
functional programmatic behavior of the Jakarta Server Page Implementation Class
constructed from that Jakarta Server Page.

EE15 A Deployment Tool must report an error when processing a
Configuration Descriptor that does not conform to the Specifications.

EE16 The presence of an XML comment in a Configuration Descriptor,
when processed by a Deployment Tool, must not cause the functional
programmatic behavior of the Deployment Tool to vary from the functional
programmatic behavior of the Deployment Tool in the absence of that
comment.

EE17 A Deployment Tool must report an error when processing an Jakarta Enterprise
Beans
deployment descriptor that includes an Jakarta Enterprise Beans QL expression that
does not
conform to the Specifications.

EE18 The Runtime must report an error when processing a Configuration
Descriptor that does not conform to the Specifications.

EE19 An error must be reported when processing a configuration
descriptor that includes a Java Persistence QL expression that does not
conform to the Specifications.

EE20 The presence of an XML comment in a Configuration Descriptor,
when processed by the Runtime, must not cause the functional
programmatic behavior of the Runtime to vary from the functional
programmatic behavior of the Runtime in the absence of that comment.

EE21 Compliance testing for Jakarta EE 10.0 consists of running Jakarta EE 10.0
TCK and the following Technology Compatibility Kits (TCKs):

Preface

24 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

* Jakarta Contexts and Dependency Injection 4.0
* Jakarta Dependency Injection 2.0
* Jakarta Bean Validation 3.0
* Jakarta XML Binding 4.0 (If XML Binding is supported)
* Jakarta JSON Processing 2.1
* Jakarta JSON Binding 3.0

In addition to the compatibility rules outlined in this TCK User's
Guide, Jakarta EE 10.0 implementations must also adhere to all of the
compatibility rules defined in the User's Guides of the aforementioned
TCKs.

EE21.1 If the Jakarta EE 10 implementation uses a runtime which has
already been validated by the Technology Compatibility Kit,
the Jakarta EE 10 implementation may use result of such validation
to claim its compliance with the Technology Compatibility Kit.

EE22 Source Code in WSDL-to-Java Output when compiled by a Reference
Compiler must execute properly when run on a Reference Runtime.

EE23 Source Code in WSDL-to-Java Output must be in source file format
defined by the Java Language Specification (JLS).

EE24 Java-to-WSDL Output must fully meet W3C requirements for the Web
Services Description Language (WSDL) 1.1.

EE25 A Java-to-WSDL Tool must not produce Java-to-WSDL Output from
source code that does not conform to the Java Language Specification
(JLS).

[[CJACBJIB]][[jakarta-platform-enterprise-edition-test-appeals-process]]

2.3 Jakarta Platform, Enterprise Edition Test Appeals Process
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Jakarta has a well established process for managing challenges to its
TCKs. Any implementor may submit a challenge to one or more tests in the
Jakarta EE TCK as it relates to their implementation.  Implementor
means the entity as a whole in charge of producing the final certified release.
*Challenges filed should represent the consensus of that entity*.

2.3.1 Valid Challenges
^^^^^^^^^^^^^^^^^^^^^^
Any test case (e.g., test class, @Test method), test case configuration (e.g.,
deployment descriptor), test beans, annotations, and other resources considered part
of the TCK may be challenged.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    25



The following scenarios are considered in scope for test challenges:

* Claims that a test assertion conflicts with the specification.
* Claims that a test asserts requirements over and above that of the specification.
* Claims that an assertion of the specification is not sufficiently implementable.
* Claims that a test is not portable or depends on a particular implementation.

2.3.2 Invalid Challenges
^^^^^^^^^^^^^^^^^^^^^^^^
The following scenarios are considered out of scope for test challenges and will be
immediately closed if filed:

* Challenging an implementation’s claim of passing a test.  Certification is an honor
system and these issues must be raised directly with the implementation.
* Challenging the usefulness of a specification requirement.  The challenge process
cannot be used to bypass the specification process and raise in question the need or
relevance of a specification requirement.
* Claims the TCK is inadequate or missing assertions required by the specification.
See the Improvement section, which is outside the scope of test challenges.
* Challenges that do not represent a consensus of the implementing community will be
closed until such time that the community does agree or agreement cannot be made.
The test challenge process is not the place for implementations to initiate their own
internal discussions.
* Challenges to tests that are already excluded for any reason.
* Challenges that an excluded test should not have been excluded and should be re-
added should be opened as a new enhancement request

Test challenges must be made in writing via the {TechnologyShortName} specification
project issue tracker
as described in link:#CJAJEAEI[Section 2.3.3, "TCK Test Appeals Steps."]

All tests found to be invalid will be placed on the Exclude List
for that version of the {TechnologyShortName} TCK.

[[CJAJEAEI]][[tck-test-appeals-steps]]

2.3.3 TCK Test Appeals Steps
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1. Challenges should be filed via the Jakarta EE Platform specification project’s
issue tracker using the label `challenge` and include the following information:
* The relevant specification version and section number(s)
* The coordinates of the challenged test(s)
* The exact TCK and exclude list versions
* The implementation being tested, including name and company
* The full test name
* A full description of why the test is invalid and what the correct behavior is

Preface

26    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



believed to be
* Any supporting material; debug logs, test output, test logs, run scripts, etc.

2. Specification project evaluates the challenge. +
Challenges can be resolved by a specification project lead, or a project challenge
triage team, after a consensus of the specification project committers is reached or
attempts to gain consensus fails.
Specification projects may exercise lazy consensus, voting or any practice that
follows the principles of Eclipse Foundation Development Process.
The expected timeframe for a response is two weeks or less.
If consensus cannot be reached by the specification project for a prolonged period of
time, the default recommendation is to exclude the tests and address the dispute in a
future revision of the specification.

3.  Accepted Challenges. +
A consensus that a test produces invalid results will result in the exclusion of that
test from certification requirements, and an immediate update and release of an
official distribution of the TCK including the new exclude list. The associated
`challenge` issue must be closed with an `accepted` label to indicate it has been
resolved.

4.  Rejected Challenges and Remedy. +
When a`challenge` issue is rejected, it must be closed with a label of `invalid` to
indicate it has been rejected.
There appeal process for challenges rejected on technical terms is outlined in
Escalation Appeal.
If, however, an implementer feels the TCK challenge process was not followed, an
appeal issue should be filed with specification project’s TCK issue tracker using the
label `challenge-appeal`.
A project lead should escalate the issue with the Jakarta EE Specification Committee
via email (jakarta.ee-spec@eclipse.org).
The committee will evaluate the matter purely in terms of due process.
If the appeal is accepted, the original TCK challenge issue will be reopened and a
label of `appealed-challenge` added, along with a discussion of the appeal decision,
and the `challenge-appeal` issue with be closed.
If the appeal is rejected, the `challenge-appeal` issue should closed with a label of
`invalid`.

5. Escalation Appeal. +
If there is a concern that a TCK process issue has not been resolved satisfactorily,
the
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling[Eclipse
Development Process Grievance Handling] procedure should be followed to escalate the
resolution. Note that this is not a mechanism to attempt to handle implementation
specific issues.

[[CJAHFAJE]][[specifications-for-jakarta-platform-enterprise-edition-version-10.0]]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    27



2.4 Specifications for Jakarta Platform, Enterprise Edition Version 10.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Specifications for Jakarta Platform, Enterprise Edition 10.0 are found on
the Eclipse Foundation, Jakarta EE Specifications web site at
`https://jakarta.ee/specifications/platform/10/`. You may also find information
available from the EE4J Jakarta EE Platform project page, at
`https://projects.eclipse.org/projects/ee4j.jakartaee-platform`.

[[CJAHIGAB]][[libraries-for-jakarta-platform-enterprise-edition-version-10.0]]

2.5 Libraries for Jakarta Platform, Enterprise Edition Version 10.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following list constitutes the complete list of packages that are
required for Jakarta EE 10.0:

* jakarta.annotation
* jakarta.annotation.security
* jakarta.annotation.sql
* jakarta.batch.api
* jakarta.batch.api.chunk
* jakarta.batch.api.chunk.listener
* jakarta.batch.api.listener
* jakarta.batch.api.partition
* jakarta.batch.operations
* jakarta.batch.runtime
* jakarta.batch.runtime.context
* jakarta.decorator
* jakarta.ejb
* jakarta.ejb.embeddable
* jakarta.ejb.spi
* jakarta.el
* jakarta.enterprise.concurrent
* jakarta.enterprise.context
* jakarta.enterprise.context.control
* jakarta.enterprise.context.spi
* jakarta.enterprise.event
* jakarta.enterprise.inject
* jakarta.enterprise.inject.literal
* jakarta.enterprise.inject.se
* jakarta.enterprise.inject.spi
* jakarta.enterprise.inject.spi.configurator
* jakarta.enterprise.util
* jakarta.faces
* jakarta.faces.annotation
* jakarta.faces.application

Preface

28    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



* jakarta.faces.bean
* jakarta.faces.component
* jakarta.faces.component.behavior
* jakarta.faces.component.html
* jakarta.faces.component.search
* jakarta.faces.component.visit
* jakarta.faces.context
* jakarta.faces.convert
* jakarta.faces.el
* jakarta.faces.event
* jakarta.faces.flow
* jakarta.faces.flow.builder
* jakarta.faces.lifecycle
* jakarta.faces.model
* jakarta.faces.push
* jakarta.faces.render
* jakarta.faces.validator
* jakarta.faces.view
* jakarta.faces.view.facelets
* jakarta.faces.webapp
* jakarta.inject
* jakarta.interceptor
* jakarta.jms
* jakarta.json
* jakarta.json.bind
* jakarta.json.bind.adapter
* jakarta.json.bind.annotation
* jakarta.json.bind.config
* jakarta.json.bind.serializer
* jakarta.json.bind.spi
* jakarta.json.spi
* jakarta.json.stream
* jakarta.mail
* jakarta.mail.event
* jakarta.mail.internet
* jakarta.mail.search
* jakarta.mail.util
* jakarta.persistence
* jakarta.persistence.criteria
* jakarta.persistence.metamodel
* jakarta.persistence.spi
* jakarta.resource
* jakarta.resource.cci
* jakarta.resource.spi
* jakarta.resource.spi.endpoint
* jakarta.resource.spi.security
* jakarta.resource.spi.work
* jakarta.security.auth.message

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    29



* jakarta.security.auth.message.callback
* jakarta.security.auth.message.config
* jakarta.security.auth.message.module
* jakarta.security.enterprise
* jakarta.security.enterprise.authentication.mechanism.http
* jakarta.security.enterprise.credential
* jakarta.security.enterprise.identitystore
* jakarta.security.jacc
* jakarta.servlet
* jakarta.servlet.annotation
* jakarta.servlet.descriptor
* jakarta.servlet.http
* jakarta.servlet.jsp
* jakarta.servlet.jsp.el
* jakarta.servlet.jsp.jstl.core
* jakarta.servlet.jsp.jstl.fmt
* jakarta.servlet.jsp.jstl.sql
* jakarta.servlet.jsp.jstl.tlv
* jakarta.servlet.jsp.tagext
* jakarta.transaction
* javax.transaction.xa
* jakarta.validation
* jakarta.validation.bootstrap
* jakarta.validation.constraints
* jakarta.validation.constraintvalidation
* jakarta.validation.executable
* jakarta.validation.groups
* jakarta.validation.metadata
* jakarta.validation.spi
* jakarta.validation.valueextraction
* jakarta.websocket
* jakarta.websocket.server
* jakarta.ws.rs
* jakarta.ws.rs.client
* jakarta.ws.rs.container
* jakarta.ws.rs.core
* jakarta.ws.rs.ext
* jakarta.ws.rs.sse
* jakarta.xml.bind (optional)
* jakarta.xml.bind.annotation (optionsl)
* jakarta.xml.bind.annotation.adapters (optional)
* jakarta.xml.bind.attachment (optional)
* jakarta.xml.bind.util (optional)

Procedure for Jakarta Platform, Enterprise Edition 10 Web Profile Certification
================================================================================

Preface

30    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



[[GJJPZ]][[procedure-for-jakarta-platform-enterprise-edition-10-web-profile-
certification]]

3 Procedure for Jakarta Platform, Enterprise Edition 10 Web Profile Certification
----------------------------------------------------------------------------------

This chapter describes the compatibility testing procedure and
compatibility requirements for Jakarta Platform, Enterprise Edition Version 10
Web Profile.

This chapter contains the following sections:

* link:#CEGEJDGE[Certification Overview]
* link:#CEGFGHIC[Compatibility Requirements]
* link:#CEGHFFED[Jakarta Platform, Enterprise Edition Version 10 Test
Appeals Process]
* link:#CEGEHIBD[Specifications for Jakarta Platform, Enterprise Edition
Version 10, Web Profile]
* link:#CEGFDIEG[Libraries for Jakarta Platform, Enterprise Edition Version
10, Web Profile]

[[CEGEJDGE]][[certification-overview]]

3.1 Certification Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~

The certification process for Jakarta EE 10, Web Profile consists of the following
activities:

* Install the appropriate version of the Technology Compatibility Kit
(TCK) and execute it in accordance with the instructions in this User's
Guide.
* Ensure that you meet the requirements outlined in ”Compatibility
Requirements,” below.

* Certify to the Eclipse Foundation that you have finished
testing and that you meet all of the compatibility requirements,
as required by the Eclipse Foundation TCK License.

[[CEGFGHIC]][[compatibility-requirements]]

3.2 Compatibility Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The compatibility requirements for Jakarta EE 10, Web Profile consist of meeting the
requirements set forth by the rules and
associated definitions contained in this section.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    31



[[sthref10]][[definitions]]

3.2.1 Definitions
^^^^^^^^^^^^^^^^^

These definitions are for use only with these compatibility requirements
and are not intended for any other purpose.

[[sthref11]][[sthref12]]

Table 3-1 Definitions 

[width="100%",cols="25%,75%",options="header",]
|=======================================================================
|Term |Definition
|API Definition Product |A Product for which the only Java class files
contained in the product are those corresponding to the application
programming interfaces defined by the Specifications, and which is
intended only as a means for formally specifying the application
programming interfaces defined by the Specifications.

|Application |A collection of components contained in a single
application package (such as an EAR file or JAR file) and deployed at
the same time using a Deployment Tool.

|Computational Resource a|
A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at
a specific or minimum revision level so as to satisfy the requirements
of the Test Suite.

Examples of computational resources that may vary in quantity are RAM
and file descriptors.

Examples of computational resources that may vary in existence (that is,
may or may not exist) are graphics cards and device drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

|Configuration Descriptor |Any file whose format is well defined by a
specification and which contains configuration information for a set of
Java classes, archive, or other feature defined in the specification.

|Conformance Tests |All tests in the Test Suite for an indicated
Technology Under Test, as released and distributed by the Eclipse Foundation,
excluding
those tests on the Exclude List for the Technology Under Test.

Preface

32    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



|Container |An implementation of the associated Libraries, as specified
in the Specifications, and a version of a Java Platform, Standard
Edition Runtime Product, as specified in the Specifications, or a later
version of a Java Platform, Standard Edition Runtime Product that also
meets these compatibility requirements.

|Deployment Tool |A tool used to deploy applications or components in a
Product, as described in the Specifications.

|Documented |Made technically accessible and made known to users,
typically by means such as marketing materials, product documentation,
usage messages, or developer support programs.

|Edition |A Version of the Java Platform. Editions include Java Platform
Standard Edition and Java Platform Enterprise Edition.

|Endorsed Standard |A Java API defined through a standards process other
than the Jakarta Enterprise Specification Process. The Endorsed Standard packages are
listed later in this chapter.

|Exclude List |The most current list of tests, released and distributed by the
Eclipse Foundation, that are not required to be passed to certify
conformance. The Jakarta EE Specification Committee may add to the Exclude List for
that
Test Suite as needed at any time, in which case the updated TCK version
supplants any previous Exclude Lists for that Test Suite.

|Java-to-WSDL Output |Output of a Java-to-WSDL Tool that is required for
Web service deployment and invocation.

|Java-to-WSDL Tool |A software development tool that implements or
incorporates a function that generates web service endpoint descriptions
in WSDL and XML schema format from Source Code as specified by the JAXWS
Specification.

|Jakarta Server Page |A text-based document that uses Jakarta Server Pages
technology.

|Jakarta Server Page Implementation Class |A program constructed by transforming
the Jakarta Server Page text into a Java language program using the transformation
rules described in the Specifications.

|Libraries a|
The class libraries, as specified through the Jakarta EE Specification Process
(JESP), for the Technology Under Test.

The Libraries for Jakarta Platform, Enterprise Edition Version 10 are listed

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    33



at the end of this chapter.

|Location Resource a|
A location of classes or native libraries that are components of the
test tools or tests, such that these classes or libraries may be
required to exist in a certain location in order to satisfy the
requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

|Maintenance Lead |The corresponding Jakarta EE Specification Project is
responsible for maintaining the Specification and the TCK for the
Technology. The Specification Project Team will propose revisions and
updates to the Jakarta EE Specification Committee which will approve and
release new versions of the specification and TCK. Eclipse Jakarta EE
Specification Committee is the Maintenance Lead for Jakarta Platform,
Enterprise Edition Version 10, Web Profile.

|Operating Mode a|
Any Documented option of a Product that can be changed by a user in
order to modify the behavior of the Product.

For example, an Operating Mode can be binary (enable/disable
optimization), an enumeration (select from a list of protocols), or a
range (set the maximum number of active threads).

Note that an Operating Mode may be selected by a command line switch, an
environment variable, a GUI user interface element, a configuration or
control file, etc.

|Product |A vendor's product in which the Technology Under Test is
implemented or incorporated, and that is subject to compatibility
testing.

|Product Configuration a|
A specific setting or instantiation of an Operating Mode.

For example, a Product supporting an Operating Mode that permits user
selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

|Rebuildable Tests |Tests that must be built using an implementation
specific mechanism. This mechanism must produce specification-defined
artifacts. Rebuilding and running these tests against a known
compatible implementation verifies that the mechanism generates
compatible artifacts.

Preface

34    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



|Compatible Implementation (CI) |A verified compatible implementation
of a Specification.

|Resource |A Computational Resource, a Location Resource, or a Security
Resource.

|Rules |These definitions and rules in this Compatibility Requirements
section of this User's Guide.

|Runtime |The Containers specified in the Specifications.

|Security Resource a|
A security privilege or policy necessary for the proper execution of the
Test Suite.

For example, the user executing the Test Suite will need the privilege
to access the files and network resources necessary for use of the
Product.

|Specifications a|
The documents produced through the Jakarta EE Specification Process (JESP)
that define a particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in
this chapter.

|Technology |Specifications and one or more compatible implementations produced
through the Jakarta EE Specification Process (JESP).

|Technology Under Test |Specifications and a compatible implementation
for Jakarta Platform, Enterprise Edition Version 10, Web Profile.

|Test Suite |The requirements, tests, and testing tools distributed by
the Maintenance Lead as applicable to a given Version of the Technology.

|Version |A release of the Technology, as produced through the
Jakarta EE Specification Process (JESP).

|WSDL-to-Java Output |Output of a WSDL-to-Java tool that is required for
Web service deployment and invocation.

|WSDL-to-Java Tool |A software development tool that implements or
incorporates a function that generates web service interfaces for
clients and endpoints from a WSDL description as specified by the JAXWS
Specification.
|=======================================================================

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    35



[[CEGCFBHB]][[rules-for-jakarta-platform-enterprise-edition-version-10-products]]

3.2.2 Rules for Jakarta Platform, Enterprise Edition Version 10 Products
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The following rules apply for each implementation:

EE-WP1 The Product must be able to satisfy all applicable compatibility
requirements, including passing all required TCK tests.

For example, if a Product provides distinct Operating Modes to optimize
performance, then that Product must satisfy all applicable compatibility
requirements for a Product in each Product Configuration, and
combination of Product Configurations, of those Operating Modes.

EE-WP1.1 Each implementation must have at least one configuration that can be used to
pass
all required TCK Tests, although such configuration may need adjustment (e.g. whether
statically
or via administrative tooling).

EE-WP1.2 An implementation may have mode(s) that provide compatibility with previous
Jakarta EE versions.

EE-WP1.3 An API Definition Product is exempt from all functional testing
requirements defined here, except the signature tests.

EE-WP2 Some Conformance Tests may have properties that may be changed.
Properties that can be changed are identified in the configuration
interview. Properties that can be changed are identified in the JavaTest
Environment (.jte) files in the lib directory of the Test Suite
installation. Apart from changing such properties and other allowed
modifications described in this User's Guide (if any), no source or
binary code for a Conformance Test may be altered in any way without
prior written permission. Any such allowed alterations to the
Conformance Tests will be provided via the Jakarta EE Specification Project
website and apply to all vendor compatible implementations.

EE-WP3 The testing tools supplied as part of the Test Suite or as
updated by the Maintenance Lead must be used to certify compliance.

EE-WP4 The Exclude List associated with the Test Suite cannot be
modified.

EE-WP5 The Maintenance Lead may define exceptions to these Rules. Such
exceptions would be made available as above, and will apply to all vendor
implementations.

Preface

36    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



EE-WP6 All hardware and software component additions, deletions, and
modifications to a Documented supporting hardware/software platform,
that are not part of the Product but required for the Product to satisfy
the compatibility requirements, must be Documented and available to
users of the Product.

EE-WP7 The Product must contain the full set of public and protected
classes and interfaces for all the Libraries. Those classes and
interfaces must contain exactly the set of public and protected methods,
constructors, and fields defined by the Specifications for those
Libraries. No subsetting, supersetting, or modifications of the public
and protected API of the Libraries are allowed except only as
specifically exempted by these Rules.

EE-WP7.1 If a Product includes Technologies in addition to the
Technology Under Test, then it must contain the full set of combined
public and protected classes and interfaces. The API of the Product must
contain the union of the included Technologies. No further modifications
to the APIs of the included Technologies are allowed.

EE-WP7.2 A Product may provide a newer version of an Endorsed Standard.
Upon request, the Maintenance Lead will make available alternate
Conformance Tests as necessary to conform with such newer version of an
Endorsed Standard. Such alternate tests will be made available to and
apply to all implementers. If a Product provides a newer version of an
Endorsed Standard, the version of the Endorsed Standard supported by the
Product must be Documented.

EE-WP7.3 The Maintenance Lead may authorize the use of newer Versions of
a Technology included in the Technology Under Test. A Product that
provides a newer Version of a Technology must meet the Compatibility
Requirements for that newer Version, and must Document that it supports
the newer Version.

EE-WP8 Except for tests specifically required by this TCK to be rebuilt
(if any), the binary Conformance Tests supplied as part of the Test
Suite or as updated by the Maintenance Lead must be used to certify
compliance.

EE-WP9 The functional programmatic behavior of any binary class or
interface must be that defined by the Specifications.

EE-WP9.1 A Product may contain Operating Modes that meet all of these
requirements, except Rule EE-WP9, provided that:

.  The Operating Modes must not violate the Java Platform, Standard
Edition Rules.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    37



.  Some Product Configurations of such Operating Modes may provide only
a subset of the functional programmatic behavior required by the
Specifications. The behavior of applications that use more than the
provided subset, when run in such Product Configurations, is
unspecified.
.  The functional programmatic behavior of any binary class or
interface in the above defined subset must be that defined by the
Specifications.
.  Any Product Configuration that invokes this rule must be clearly
Documented as not fully meeting the requirements of the Specifications.

EE-WP10 Each Container must make technically accessible all Java SE
Runtime interfaces and functionality, as defined by the Specifications,
to programs running in the Container, except only as specifically
exempted by these Rules.

EE-WP10.1 Containers may impose security constraints, as defined by the
Specifications.

EE-WP11 A web Container must report an error, as defined by the
Specifications, when processing a Jakarta Server Page that does not conform to the
Specifications.

EE-WP12 The presence of a Java language comment or Java language
directive in a Jakarta Server Page that specifies ”java” as the scripting language,
when processed by a web Container, must not cause the functional
programmatic behavior of that Jakarta Server Page to vary from the functional
programmatic behavior of that Jakarta Server Page in the absence of that Java
language comment or Java language directive.

EE-WP13 The contents of any fixed template data (defined by the
Specifications) in a Jakarta Server Page, when processed by a web Container, must
not affect the functional programmatic behavior of that Jakarta Server Page, except
as defined by the Specifications.

EE-WP14 The functional programmatic behavior of a Jakarta Server Page that
specifies ”java” as the scripting language must be equivalent to the
functional programmatic behavior of the Jakarta Server Page Implementation Class
constructed from that Jakarta Server Page.

EE-WP15 A Deployment Tool must report an error when processing a
Configuration Descriptor that does not conform to the Specifications.

EE-WP16 The presence of an XML comment in a Configuration Descriptor,
when processed by a Deployment Tool, must not cause the functional
programmatic behavior of the Deployment Tool to vary from the functional
programmatic behavior of the Deployment Tool in the absence of that
comment.

Preface

38    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



EE-WP17 A Deployment Tool must report an error when processing an Jakarta Enterprise
Beans
deployment descriptor that includes an Jakarta Enterprise Beans QL expression that
does not
conform to the Specifications.

EE-WP18 The Runtime must report an error when processing a Configuration
Descriptor that does not conform to the Specifications.

EE-WP19 The presence of an XML comment in a Configuration Descriptor,
when processed by the Runtime, must not cause the functional
programmatic behavior of the Runtime to vary from the functional
programmatic behavior of the Runtime in the absence of that comment.

EE-WP20 Compatibility testing for the Jakarta EE 10 Web Profile consists of
running the tests for the technologies defined in
link:intro.html#BHCGFHDI[Section 1.2.2, "Jakarta EE 10 Web Profile
Technologies Tested With Jakarta EE 10 Platform TCK."] If optional technologies
defined in the Jakarta EE 10 Web Profile platform are implemented in
addition to the required Jakarta EE 10 Web Profile technologies,
corresponding tests within this TCK for those additional technologies
must also be run.

EE-WP21 Compliance testing for Jakarta EE 10 Web Profile consists of running
the Jakarta EE 10 Web Profile tests and the following Technology
Compatibility Kits (TCKs):

* Jakarta Contexts and Dependency Injection 4.0
* Jakarta Dependency Injection 2.0
* Jakarta Bean Validation 3.0
* Jakarta XML Binding 4.0 (If XML Binding is supported)
* Jakarta JSON Processing 2.1
* Jakarta JSON Binding 3.0

In addition to the compatibility rules outlined in this TCK User's
Guide, Jakarta EE 10 implementations must also adhere to all of the
compatibility rules defined in the User's Guides of the aforementioned
TCKs.

EE-WP21.1 If the Jakarta EE 10 Web Profile implementation uses a runtime which has
already been validated by the Technology Compatibility Kit,
the Jakarta EE 10 Web Profile implementation may use result of such validation
to claim its compliance with the Technology Compatibility Kit.

EE-WP22 Source Code in WSDL-to-Java Output when compiled by a Reference
Compiler must execute properly when run on a Reference Runtime.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    39



EE-WP23 Source Code in WSDL-to-Java Output must be in source file format
defined by the Java Language Specification (JLS).

EE-WP24 Java-to-WSDL Output must fully meet W3C requirements for the Web
Services Description Language (WSDL) 1.1.

EE-WP25 A Java-to-WSDL Tool must not produce Java-to-WSDL Output from
source code that does not conform to the Java Language Specification
(JLS).

[[CEGHFFED]][[jakarta-platform-enterprise-edition-test-appeals-process]]

3.3 Jakarta Platform, Enterprise Edition Test Appeals Process
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Jakarta has a well established process for managing challenges to its
TCKs. Any implementor may submit a challenge to one or more tests in the
Jakarta EE TCK as it relates to their implementation. Implementor
means the entity as a whole in charge of producing the final certified release.
Challenges filed should represent the consensus of that entity.

3.3.1 Valid Challenges
^^^^^^^^^^^^^^^^^^^^^^
Any test case (e.g., test class, @Test method), test case configuration (e.g.,
deployment descriptor), test beans, annotations, and other resources considered part
of the TCK may be challenged.

The following scenarios are considered in scope for test challenges:

* Claims that a test assertion conflicts with the specification.
* Claims that a test asserts requirements over and above that of the specification.
* Claims that an assertion of the specification is not sufficiently implementable.
* Claims that a test is not portable or depends on a particular implementation.

3.3.2 Invalid Challenges
^^^^^^^^^^^^^^^^^^^^^^^^
The following scenarios are considered out of scope for test challenges and will be
immediately closed if filed:

* Challenging an implementation’s claim of passing a test. Certification is an honor
system and these issues must be raised directly with the implementation.
* Challenging the usefulness of a specification requirement. The challenge process
cannot be used to bypass the specification process and raise in question the need or
relevance of a specification requirement.
* Claims the TCK is inadequate or missing assertions required by the specification.
See the Improvement section, which is outside the scope of test challenges.
* Challenges that do not represent a consensus of the implementing community will be
closed until such time that the community does agree or agreement cannot be made.

Preface

40 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

The test challenge process is not the place for implementations to initiate their own
internal discussions.
* Challenges to tests that are already excluded for any reason.
* Challenges that an excluded test should not have been excluded and should be re-
added should be opened as a new enhancement request

Test challenges must be made in writing via the {TechnologyShortName} specification
project issue tracker
as described in link:#CJAJEAEI[Section 2.3.3, "TCK Test Appeals Steps."]

All tests found to be invalid will be placed on the Exclude List
for that version of the {TechnologyShortName} TCK.

[[CJAJEAEI]][[tck-test-appeals-steps]]

3.3.3 TCK Test Appeals Steps
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1. Challenges should be filed via the Jakarta EE Platform specification project’s
issue tracker using the label `challenge` and include the following information:
* The relevant specification version and section number(s)
* The coordinates of the challenged test(s)
* The exact TCK and exclude list versions
* The implementation being tested, including name and company
* The full test name
* A full description of why the test is invalid and what the correct behavior is
believed to be
* Any supporting material; debug logs, test output, test logs, run scripts, etc.

2. Specification project evaluates the challenge. +
Challenges can be resolved by a specification project lead, or a project challenge
triage team, after a consensus of the specification project committers is reached or
attempts to gain consensus fails.
Specification projects may exercise lazy consensus, voting or any practice that
follows the principles of Eclipse Foundation Development Process.
The expected timeframe for a response is two weeks or less.
If consensus cannot be reached by the specification project for a prolonged period of
time, the default recommendation is to exclude the tests and address the dispute in a
future revision of the specification.

3. Accepted Challenges. +
A consensus that a test produces invalid results will result in the exclusion of that
test from certification requirements, and an immediate update and release of an
official distribution of the TCK including the new exclude list. The associated
`challenge` issue must be closed with an `accepted` label to indicate it has been
resolved.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 41

4. Rejected Challenges and Remedy. +
When a`challenge` issue is rejected, it must be closed with a label of `invalid` to
indicate it has been rejected.
There appeal process for challenges rejected on technical terms is outlined in
Escalation Appeal.
If, however, an implementer feels the TCK challenge process was not followed, an
appeal issue should be filed with specification project’s TCK issue tracker using the
label `challenge-appeal`.
A project lead should escalate the issue with the Jakarta EE Specification Committee
via email (jakarta.ee-spec@eclipse.org).
The committee will evaluate the matter purely in terms of due process.
If the appeal is accepted, the original TCK challenge issue will be reopened and a
label of `appealed-challenge` added, along with a discussion of the appeal decision,
and the `challenge-appeal` issue with be closed.
If the appeal is rejected, the `challenge-appeal` issue should closed with a label of
`invalid`.

5. Escalation Appeal. +
If there is a concern that a TCK process issue has not been resolved satisfactorily,
the
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling[Eclipse
Development Process Grievance Handling] procedure should be followed to escalate the
resolution. Note that this is not a mechanism to attempt to handle implementation
specific issues.

[[CEGEHIBD]][[specifications-for-jakarta-platform-enterprise-edition-version-10-web-
profile]]

3.4 Specifications for Jakarta Platform, Enterprise Edition Version 10, Web Profile
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Specifications for Jakarta Platform, Enterprise Edition 10, Web Profile are found
on the Eclipse Foundation, Jakarta EE Specification web
site at `https://jakarta.ee/specifications/webprofile/10/`. You may also find
information available from the EE4J Jakarta EE Platform project page, at
`https://projects.eclipse.org/projects/ee4j.jakartaee-platform`.

[[CEGFDIEG]][[3libraries-for-jakarta-platform-enterprise-edition-version-10-web-
profile]]

3.5 Libraries for Jakarta Platform, Enterprise Edition Version 10, Web Profile
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following location provides a list of packages that constitute the
required class libraries for the full Java EE 10 platform:

``https://projects.eclipse.org/projects/ee4j.jakartaee-platform`

Preface

42 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

The following list constitutes the subset of Jakarta EE 10 packages that are
required for the Jakarta EE 10 Web Profile:

* jakarta.annotation
* jakarta.annotation.security
* jakarta.annotation.sql
* jakarta.decorator
* jakarta.ejb
* jakarta.ejb.embeddable
* jakarta.ejb.spi
* jakarta.el
* jakarta.enterprise.context
* jakarta.enterprise.context.spi
* jakarta.enterprise.event
* jakarta.enterprise.inject
* jakarta.enterprise.inject.spi
* jakarta.enterprise.util
* jakarta.faces
* jakarta.faces.application
* jakarta.faces.bean
* jakarta.faces.component
* jakarta.faces.component.behavior
* jakarta.faces.component.html
* jakarta.faces.component.visit
* jakarta.faces.context
* jakarta.faces.convert
* jakarta.faces.el
* jakarta.faces.event
* jakarta.faces.flow
* jakarta.faces.flow.builder
* jakarta.faces.lifecycle
* jakarta.faces.model
* jakarta.faces.render
* jakarta.faces.validator
* jakarta.faces.view
* jakarta.faces.view.facelets
* jakarta.faces.webapp
* jakarta.inject
* jakarta.interceptor
* jakarta.json
* jakarta.json.spi
* jakarta.json.stream
* jakarta.persistence
* jakarta.persistence.criteria
* jakarta.persistence.metamodel
* jakarta.persistence.spi
* jakarta.servlet
* jakarta.servlet.annotation

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 43

* jakarta.servlet.descriptor
* jakarta.servlet.http
* jakarta.servlet.jsp
* jakarta.servlet.jsp.el
* jakarta.servlet.jsp.jstl.core
* jakarta.servlet.jsp.jstl.fmt
* jakarta.servlet.jsp.jstl.sql
* jakarta.servlet.jsp.jstl.tlv
* jakarta.servlet.jsp.tagext
* jakarta.transaction
* javax.transaction.xa
* jakarta.validation
* jakarta.validation.bootstrap
* jakarta.validation.constraints
* jakarta.validation.constraintvalidation
* jakarta.validation.executable
* jakarta.validation.groups
* jakarta.validation.metadata
* jakarta.validation.spi
* jakarta.websocket
* jakarta.websocket.server
* jakarta.ws.rs
* jakarta.ws.rs.client
* jakarta.ws.rs.container
* jakarta.ws.rs.core
* jakarta.ws.rs.ext
* jakarta.json.bind
* jakarta.json.bind.adapter
* jakarta.json.bind.annotation
* jakarta.json.bind.config
* jakarta.json.bind.serializer
* jakarta.json.bind.spi
* jakarta.security.enterprise
* jakarta.security.enterprise.authentication.mechanism.http
* jakarta.security.enterprise.credential
* jakarta.security.enterprise.identitystore
* jakarta.xml.bind (optional)
* jakarta.xml.bind.annotation (optional)
* jakarta.xml.bind.annotation.adapters (optional)
* jakarta.xml.bind.attachment (optional)
* jakarta.xml.bind.util (optional)

[[GBFTP]][[installation]]

4 Installation

Preface

44 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

This chapter explains how to install the Jakarta EE 10 Platform TCK software and
perform a sample test run to verify your installation and familiarize
yourself with the TCK. Installation instructions are provided for Eclipse
GlassFish 6.1, a Compatible Implementation (CI) of Jakarta EE. If you are using
another compatible implementation, refer to instructions provided with that
implementation.

After installing the software according to the instructions in this
chapter, proceed to link:config.html#GBFVV[Chapter 5, "Setup and
Configuration,"] for instructions on configuring your test environment.

This chapter covers the following topics:

* link:#GEVGN[Installing the Jakarta EE 10 Compatible Implementation]
* link:#GEVHP[Installing the Jakarta EE 10 Platform TCK]
* link:#GEVGZ[Verifying Your Installation (Optional)]

[[GEVGN]][[installing-the-jakarta-ee-8-compatible-implementation]]

4.1 Installing the Jakarta EE 10 Compatible Implementation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[[sthref14]]

==== Before You Begin

If a Jakarta EE 10 Compatible Implementation (CI) is already installed, it
is recommended that you shut it down and start with a new, clean CI
installation.

1.  Install the Java SE 8 JDK bundle, if it is not already installed. +
Refer to the JDK installation instructions for details. The JDK bundle
can be downloaded from
`http://www.oracle.com/technetwork/java/javase/downloads/index.html`
2.  Create or change to the directory in which you will install the Jakarta
EE 10 CI.
3.  Copy or download the Jakarta EE 10 CI, for example, Eclipse GlassFish 6.1.
4.  Unzip the Jakarta EE 10 CI bundle.
5.  For Eclipse GlassFish 6.1, set the following environment variables:
* `JAVAEE_HOME` to the CI directory you just created
* `JAVA_HOME` to the JDK you want to use
6.  Start the Jakarta EE 10 CI, Eclipse GlassFish 6.1, by executing the following
command: +
[source,oac_no_warn]
----
<JAVAEE_HOME>/bin/asadmin start-domain
----

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    45



[[GEVHP]][[installing-the-jakarta-ee-10-platform-tck]]

4.2 Installing the Jakarta EE 10 Platform TCK
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Complete the following procedure to install the Jakarta EE 10 Platform TCK on a
system running the Solaris, Linux, or Windows operating system.

[NOTE]
===

When installing in the Windows environment, the Jakarta EE 10 CI, Java SE 8
JDK, and TCK should be installed on the same drive. If you must install
these components on different drives, be sure to change the
`ri.applicationRoot` and `s1as.applicationRoot` properties as needed in
the `<TS_HOME>/bin/ts.jte` TCK configuration file. See
link:config.html#GEXOS[Section 5.4.2, "Windows-Specific Properties,"] for
more information.

===

. Copy or download the TCK 10 software.

. Change to the directory in which you want to install the Jakarta EE 10
TCK software and use the `unzip` command to extract the bundle:
+
[source,oac_no_warn]

cd install_directory
unzip jakartaeetck-nnn.zip

+
This creates the `jakartaeetck` directory. The
install_directory`/jakartaeetck` directory will be `TS_HOME`.
. Set the `TS_HOME` environment variable to point to the `javaeetck`
directory.

After you complete the installation, follow the directions in
link:config.html#GBFVV[Chapter 5, "Setup and Configuration,"] to set up
and configure the Jakarta EE 10 Platform TCK test suite.

[[GEVGZ]][[verifying-your-installation-optional]]

4.3 Verifying Your Installation (Optional)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This procedure is optional. After installing the Jakarta EE 10 CI and Jakarta

Preface

46    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



EE 10 TCK, you may want to verify your installation by running the TCK
samples against the Jakarta EE 10 CI. See link:config.html#GBFVV[Chapter 5,
"Setup and Configuration,"] for complete configuration instructions.

.  For the Jakarta EE 10 CI, Eclipse GlassFish 6.1, set the following properties in
your `<TS_HOME>/bin/ts.jte` file:
+
[source,oac_no_warn]
----
javaee.home=<JAVAEE_HOME>
javaee.home.ri=<JAVAEE_HOME>
mailHost=<mail-server-host> // the name of an accessible SMTP server
mailuser1=firstname.lastname@xyz.com // a valid email address
javamail.password=password // password for mailuser1
orb.host=localhost // the name of the machine running the Jakarta EE 10 CI
orb.host.ri=localhost // the name of the machine running the Jakarta EE 10 CI
----
+
.  Use these commands to run the Jakarta EE 10 Platform TCK sample tests:
+
[source,oac_no_warn]
----
cd <TS_HOME>/bin
ant start.javadb.asadmin
ant config.vi
cd <TS_HOME>/src/com/sun/ts/tests/samples
ant runclient
----

[[GBFVV]][[setup-and-configuration]]

5 Setup and Configuration
-------------------------

This chapter describes how to set up the Jakarta EE 10 Platform TCK test suite and
configure it to work with your test environment. It is recommended that
you first set up the testing environment using the Jakarta EE 10 CI and then
with your Jakarta EE 10 server.

This chapter includes the following topics:

* link:#GEWTL[Allowed Modifications]
* link:#GEWTP[Configuring the Test Environment]
* link:#GEWTQ[Configuring a Jakarta EE 10 Server]
* link:#GEXPP[Modifying Environment Settings for Specific Technology

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    47



Tests]
* link:#GEYPB[Using the JavaTest Harness Configuration GUI]

[[GEWTL]][[allowed-modifications]]

5.1 Allowed Modifications
~~~~~~~~~~~~~~~~~~~~~~~~~

You can modify the following test suite components only:

* Your implementation of the porting package
* `ts.jte` environment file
* The vendor-specific SQL files in `<TS_HOME>/sql`
* Any files in `<TS_HOME>/bin` and `<TS_HOME>/bin/xml` (except for
`ts.*` files)

[[GEWTP]][[configuring-the-test-environment]]

5.2 Configuring the Test Environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The instructions in this section and in link:#GEWWA[Section 5.3.3,
"Configuring Your Application Server as the VI,"] step you through the
configuration process for the Solaris, Microsoft Windows, and Linux
platforms.

All TCK test configuration procedures are based on running the Ant
scripts against a set of build targets. The primary location of any
configuration settings you are likely to make is the
`<TS_HOME>/bin/ts.jte` environment file. You may also want to modify the
`javaee_vi.xml` and `initdb.xml` Ant configuration files and the
vendor-specific SQL files. These two files contain predefined Ant
targets that are implemented such that they automatically configure the
Jakarta EE 10 CI and its associated database in order to pass the TCK. A
Implementer may choose to implement these targets to work with their server
environment to perform the steps described in link:#GEWWA[Section 5.3.3,
"Configuring Your Application Server as the VI."]

[NOTE]
=======================================================================

Ant targets are available at all levels of the TCK source tree that
allow you to execute a wide variety of test scenarios and
configurations.

=======================================================================

Preface

48    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



[[sthref15]]

=== Before You Begin

In these instructions, variables in angle brackets need to be expanded
for each platform. For example, `<TS_HOME>` becomes `$TS_HOME` on
Solaris/Linux and `%TS_HOME%` on Windows. In addition, the forward
slashes (`/`) used in all of the examples need to be replaced with
backslashes (`\`) for Windows.

1.  Identify the software pieces and assemble them into the Jakarta EE 10
platform to be tested for certification.
2.  Implement the porting package APIs. +
Some functionality in the Jakarta EE 10 platform is not completely specified
by an API. To handle this situation, the Jakarta EE 10 Platform TCK test suite
defines a set of interfaces in the `com.sun.cts.porting` package, which
serve to abstract any implementation-specific code. You must create your
own implementations of the porting package interfaces to work with your
particular Jakarta EE 10 server environment. See
link:portingpackage.html#GFAUG[Section 11.2, "Porting Package APIs,"] for
additional information about the porting APIs. API documentation for the
porting package interfaces is available in the `<TS_HOME>/docs/api`
directory.
3.  Set up the Jakarta Platform, Enterprise Edition Compatible
Implementation (CI) server. +
See link:#GEWUI[Section 5.3.2, "Configuring the Jakarta EE 10 CI as the
VI,"] for a list of the modifications that must be made to run CTS
against the Jakarta EE 10 CI.
4.  Set up the vendor's Jakarta EE 10 server implementation (VI). +
See link:#GEWWA[Section 5.3.3, "Configuring Your Application Server as
the VI,"] for a list of the modifications that must be made to run CTS
against the vendor's Jakarta EE 10 server.
5.  Validate your configuration. +
Run the sample tests provided. If the tests pass, your basic
configuration is valid. See link:using.html#GFACS[Section 7.3,
"Validating Your Test Configuration,"] for information about using
JavaTest to run the sample tests.
6.  Run the TCK tests. +
See link:using.html#GBFWO[Chapter 7, "Executing Tests,"] for information
about Starting JavaTest and running tests.

[[GEWTQ]][[configuring-a-jakarta-ee-10-server]]

5.3 Configuring a Jakarta EE 10 Server
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This section describes how to configure the Jakarta EE 10 server under test.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 49

You can run the TCK tests against the Jakarta EE 10 CI or your own Jakarta
Platform, Enterprise Edition server. When performing interoperability
(interop) tests or web service-based tests, you will be running two Jakarta
EE 10 CI servers, one of which must be a Jakarta EE 10 CI using, or configured to
use a database. For example, Eclipse GlassFish 6.1 is bundled and configured to use
the Apache Derby database.

For the purposes of this section, it is useful to clarify three terms as
they are used here:

* Compatible Implementation (CI): Jakarta EE 10 CI, for example, Eclipse GlassFish
6.1
* Vendor Implemention (VI): Jakarta EE 10 implementation from a vendor other
than Eclipse; typically, the goal of running the TCK is to certify a Jakarta
EE 10 VI; in some cases, for purposes of familiarizing yourself with TCK,
you may choose to run the Jakarta EE 10 CI as the VI
* Bundled Derby: Apache Derby database bundled with the Jakarta EE 10 CI, Eclipse
GlassFish 6.1

[[GEWSQ]][[java-platform-enterprise-edition-server-configuration-scenarios]]

5.3.1 Jakarta Platform, Enterprise Edition Server Configuration Scenarios
^^^

There are three general scenarios for configuring Jakarta EE 10 servers for
Jakarta EE 10 Platform TCK testing (Note: in the following images, Java EE refers to
Jakarta EE.
RI should be replaced with CI for Compatible Implementation):

* Configure the Jakarta EE 10 CI as the server under test +
image:img/serverpath-ri.png["CI as Server Under Test"]

Use the Jakarta EE 10 CI as the Jakarta EE 10 VI; you may want to do this as a
sanity check to make sure you are comfortable with using the Jakarta EE 10
TCK against a known standard CI with certified sample applications
before proceeding with tests against your Jakarta EE 10 VI. See
link:#GEWUI[Section 5.3.2, "Configuring the Jakarta EE 10 CI as the VI,"]
for instructions.

* Configure your Jakarta EE 10 VI as Server Under Test +
image:img/serverpath-vi.png["VI as Server Under Test"]

This is the primary goal of using the Jakarta EE 10 Platform TCK; you will eventually
need to configure the Jakarta EE 10 implementation you want to certify. See
link:#GEWWA[Section 5.3.3, "Configuring Your Application Server as the
VI,"] for instructions.

* Configure two Jakarta EE 10 servers for the purpose of interop testing +

Preface

50 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

image:img/serverpath-interop.png["Two Servers for Interop Testing"]

Rebuildable tests require that you configure two Jakarta
EE 10 servers on one or two machines. One server will be your Jakarta EE 10
VI running a database of your choice with JDBC 4.1-compliant drivers.
The second server must be the Jakarta EE 10 CI using the bundled Java DB
database.

In terms of the Jakarta EE 10 Platform TCK, all TCK configuration settings are made
in the `<TS_HOME>/bin/ts.jte` file. When configuring a Jakarta EE 10 server,
the important thing is to make sure that the settings you use for your
server match those in the `ts.jte` file.

These configuration scenarios are described in the following sections.

[[GEWUI]][[configuring-the-java-ee-8-ri-as-the-vi]]

5.3.2 Configuring the Jakarta EE 10 CI as the VI
^^

To configure the Jakarta EE 10 CI as the server under test (that is, to use
the Jakarta EE 10 CI as the VI) follow the steps listed below. In this
scenario, the goal is simply to test the Jakarta EE 10 CI against the CTS
for the purposes of familiarizing yourself with TCK test procedures. You
may also want to refer to the Quick Start guides included with the Jakarta
EE 10 TCK for similar instructions.

. Set server properties in your `<TS_HOME>/bin/ts.jte` file to suit
your test environment. +
Be sure to set the following properties:
.. Set the `webServerHost` property to the name of the host on which
your Web server is running that is configured with the CI. +
The default setting is `localhost`.
.. Set the `webServerPort` property to the port number of the host on
which the Web server is running and configured with the CI. +
The default setting is `8001`.
.. Set the `wsgen.ant.classname` property to the Vendor's
implementation class that mimics the CI Ant task that in turn calls the
`wsgen` Java-to-WSDL tool. +
The default setting is `com.sun.tools.ws.ant.WsGen`.
.. Set the `wsimport.ant.classname` property to the Vendor's
implementation class that mimics the CI Ant task that in turn calls the
`wsimport` WSDL-to-Java tool. +
The default setting is `com.sun.tools.ws.ant.WsImport`.
.. Set the `porting.ts.url.class` property to your porting
implementation class that is used for obtaining URLs. +
The default setting for the CI porting implementation is
`com.sun.ts.lib.implementation.sun.common.SunRIURL`.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 51

.. Set the database-related properties in the `<TS_HOME>/bin/ts.jte`
file. +
link:database-config.html#GFKMW[Section C.3, "Database Properties in
ts.jte,"] lists the names and descriptions for the database properties
you need to set.
.. Add the following JVM option to the `command.testExecuteAppClient`
property to enable the Security Manager in the application client
container: +
+
[source,oac_no_warn]

-Djava.security.manager

+
Add this option to the list of other `-D JVM` options for this property. +
As mentioned previously, these settings can vary, but must match
whatever you used when setting up the Jakarta EE 10 CI server.
.. Add the following JVM option for JSTL test runs with JDK 11: +
+
[source,oac_no_warn]

-Djava.locale.providers=COMPAT

+
The JVM compatibility option should be passed while starting implementation
under test. +
`-Djava.locale.providers=COMPAT` option will enable JDK 8 compatibility mode, +
JDK 8 compatibility mode is required for tags TCK tests with Dates, TimeZones
to PASS with JDK 11. +
`-Djava.locale.providers=COMPAT` should not be passed to JVM, when tests are
run with JDK 8.
. Install the Jakarta EE 10 CI and configure basic settings, as described
in link:install.html#GBFTP[Chapter 4, "Installation."]
. Start the Jakarta EE 10 CI application server. +
Refer to the application server documentation for complete instructions.
. Enable the Security Manager. +
If you are using the Jakarta EE 10 CI, execute the following command from
the command line: +
+
[source,oac_no_warn]

asadmin create-jvm-options -Djava.security.manager

+
. Stop and restart your application server so it is running with the

Preface

52 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

Security Manager enabled.
. Change to the `<TS_HOME>/bin` directory.
. Start your backend database. +
If you are using Derby as your backend database, execute the
`start.javadb` Ant target: +
+
[source,oac_no_warn]

ant -f xml/impl/glassfish/s1as.xml start.javadb

+
Otherwise, refer to your backend database administration documentation
for information about starting your database server.
. Initialize your backend database. +
If you are using Derby as your backend database, execute the
`init.derby` Ant target: +
+
[source,oac_no_warn]

ant -f xml/init.xml init.derby

+
If you are not using Derby as your backend database, refer to
link:database-config.html#GFAVUb[Appendix C, "Configuring Your Backend
Database."] +
+
[NOTE]
===

If you are using MySQL or MS SQL Server as your backend database, see
link:#GJLGQ[Section 5.4.24, "Backend Database Setup,"] for additional
database setup instructions.

===
+
. Run the configuration Ant target. +
+
[source,oac_no_warn]

ant config.vi

+
[NOTE]
===

By default, the `config.vi` Ant task configures the entire application

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 53

server. Sometimes you may not want or need to configure everything, such
as connector RAR files. If you are not performing connector-related
tests, you can avoid the deployment and configuration of RAR files by
using the Ant option `-Dskip.config.connector=true`. This will reduce
configuration times, the deployment of unneeded RAR files, and the
creation of unnecessary resources on the server under test. For example,
the following command will do this.
[source,oac_no_warn]

ant -Dskip.config.connector=true config.vi

===

. Build the special web services clients. +
The special webservices tests under the `webservices12/specialcases`
directory have prebuilt endpoints, but the clients are not prebuilt. The
clients will be built after the endpoints are first predeployed to the
application server under test. +
During the build, the clients import the WSDLs (by means of the Jakarta EE
`wsimport` and `wsgen` tools) from the predeployed webservices
endpoints. This process verifies that importing a WSDL from a
predeployed webservice endpoint works properly. +
To build the special webservices clients, the following command must be
executed: +
+
[source,oac_no_warn]

ant build.special.webservices.clients

+
This predeploys all the special webservices endpoints, builds all the
special webservices clients, and then undeploys the special webservices
endpoints. See link:portingpackage.html#GKLJO[Section 11.2.2, "Ant-Based
Deployment Interface,"] for more information about the Ant-based
deployment interface, including guidelines for creating your own
Ant-based deployment implementation.
. Continue on to link:using.html#GBFWO[Chapter 7, "Executing Tests,"]
for instructions on running tests.

[[GEWWA]][[configuring-your-application-server-as-the-vi]]

5.3.3 Configuring Your Application Server as the VI
^^^

To use a Jakarta EE 10 server other than the Jakarta EE 10 CI, follow the steps
below.

Preface

54 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

. Set server properties in your `<TS_HOME>/bin/ts.jte` file to suit
your test environment. +
Be sure to set the following properties:

.. Set the `webServerHost` property to the name of the host on which
your Web server is running that is configured with the CI. +
The default setting is `localhost`.

.. Set the `webServerPort` property to the port number of the host on
which the Web server is running and configured with the CI. +
The default setting is `8001`.

.. Set the `wsgen.ant.classname` property to the Vendor's
implementation class that mimics the CI Ant task that in turn calls the
`wsgen` Java-to-WSDL tool. +
The default setting is `com.sun.tools.ws.ant.WsGen`.

.. Set the `wsimport.ant.classname` property to the Vendor's
implementation class that mimics the CI Ant task that in turn calls the
`wsimport` WSDL-to-Java tool. +
The default setting is `com.sun.tools.ws.ant.WsImport`.

.. Set the `porting.ts.url.class` property to your porting
implementation class that is used for obtaining URLs.

.. Set the database-related properties in the `<TS_HOME>/bin/ts.jte`
file. +
link:database-config.html#GFKMW[Section C.3, "Database Properties in
ts.jte,"] lists the names and descriptions for the database properties
you need to set.

.. Add the following JVM option to the `command.testExecuteAppClient`
property to enable the Security Manager in the application client
container:
+
[source,oac_no_warn]

-Djava.security.manager

+
Add this option to the list of other -D JVM options for this property. +
These settings can vary, but must match whatever you used when setting
up your Jakarta Platform, Enterprise Edition server.

. Install the Jakarta Platform, Enterprise Edition VI and configure basic
settings. +
If you want to configure your Jakarta Platform, Enterprise Edition server

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 55

using Ant configuration target similar to the target for the Jakarta EE 10
CI, as described in link:install.html#GBFTP[Chapter 4, "Installation,"]
you will need to modify the `<TS_HOME>/bin/xml/javaee_vi.xml` file to
implement the defined Ant targets for your application server. Then run:
+
[source,oac_no_warn]

ant config.vi

+
The Ant configuration targets you implement, if any, may vary. Whichever
configuration method you choose, make sure that all configuration steps
in this procedure are completed as shown.

. Enable the Security Manager and then stop and restart your
application server so it is running with the Security Manager enabled.

. Provide alternate endpoint and WSDL URLs, if necessary. +
The `<TS_HOME>/bin` directory contains the following `.dat` files:
* `jaxws-url-props.dat`
* `jws-url-props.dat`
* `webservices12-url-props.dat`
+
These files contain the webservice endpoint and WSDL URLs that the CTS
tests use when running against the CI. In the porting package used by
the TCK, the URLs are returned as is since this is the form that the CI
expects. You may need an alternate form of these URLs to run the CTS
tests in your environment. However, you MUST NOT modify the existing
`.dat` files, but instead make any necessary changes in your own porting
implementation class to transform the URLs appropriately for your
environment.

. Install and configure a database for the server under test.

. Start your database.

. Initialize your database for TCK tests.

.. If you choose to not implement the `javaee_vi.xml` targets, execute
the following command to specify the appropriate DML file: +
(Derby DB Example)
+
[source,oac_no_warn]

ant -Dtarget.dml.file=tssql.stmt \
-Ddml.file=javadb/javadb.dml.sql copy.dml.file

Preface

56 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

+
.. Execute the following command to initialize your particular
database:
+
[source,oac_no_warn]

ant -f <TS_HOME>/bin/xml/initdb.xml init.Database

+
For example, to initialize a Derby DB database:
+
[source,oac_no_warn]

ant -f <TS_HOME>/bin/xml/initdb.xml init.javadb

+
Refer to link:database-config.html#GFAVUb[Appendix C, "Configuring Your
Backend Database,"] for detailed database configuration and
initialization instructions and a list of database-specific
initialization targets.

. Start your Jakarta EE 10 server.

. [[BABDADHA]] Set up required users and passwords.

.. Set up database users and passwords that are used for JDBC
connections. +
The Jakarta EE 10 Platform TCK requires several user names, passwords, and
user-to-role mappings. These need to match those set in your `ts.jte`
file. By default, `user1`, `user2`, `user3, password1`, `password2`, and
`password3` are set to `cts1`.

.. [[BABBHFAI]] Set up users and passwords for your Jakarta Platform, Enterprise
Edition
server. +
For the purpose of running the TCK test suite, these should be set as
follows:
+
[width="100%",cols="33%,33%,34%",options="header",]
|===
|User |Password |Groups
|`j2ee_vi` |`j2ee_vi` |`staff`
|`javajoe` |`javajoe` |`guest`
|`j2ee` |`j2ee` |`staff`, `mgr`, `asadmin`
|`j2ee_ri` |`j2ee_ri` |`staff`
|===

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 57

+
Note that adding the `asadmin` group is only necessary when running
against the Eclipse GlassFish 6.1 Jakarta EE 10 CI application server. It is required
in this case
because the management Jakarta Enterprise Bean (MEjb) in the Jakarta EE 10 server is
protected
with the `asadmin` group. Other appservers may or may not choose to
protect their MEjb. If necessary for your appserver implementation, you
should also add the group name with which your MEjb is protected. +
Also make sure the principal to role-mappings that are specified in the
runtime XML files are properly mapped in your
environment (TODO: confirm that we can also delete mention of principal (user) =>
role-mappings). Note that the principal-to-role mappings may vary for each
application.

. Make sure that the appropriate JDBC 4.1-compliant database driver
class, any associated database driver native libraries, and the correct
database driver URL are available.

. Configure your Jakarta Platform, Enterprise Edition server to use the
appropriate JDBC logical name (`jdbc/DB1`) when accessing your database
server.

. Configure your Jakarta EE 10 server to use the appropriate logical name
(`jdbc/DBTimer`) when accessing your Jakarta Enterprise Beans timer.

. Provide access to a JNDI lookup service.

. Provide access to a Web server.

. Provide access to a Jakarta Mail server that supports the SMTP protocol.

. Execute the `add.interop.certs` Ant target. +
+
[NOTE]
===

This step installs server side certificates for interoperability
testing; that is, it installs the CI's server certificate to VI and VI's
server certificate into the CI. This step is necessary for mutual
authentication tests in which both the server and client authenticate to
each other.

===
+

. [[BABEGCJH]] Install the client-side certificate in the `trustStore` on the Jakarta
EE 10

Preface

58 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

server. +
Certificates are located `<TS_HOME>/bin/certificates`. Use the
certificate that suits your environment.

.. `cts_cert`: For importing the TCK client certificate into a
`truststore`

.. `clientcert.jks`: Used by the Java SE 8 runtime to identify the CTS
client's identity

.. `clientcert.p12`: Contains TCK client certificate in `pkcs12` format

.. Append the file `<TS_HOME>/bin/server_policy.append` to the Java
policy file or files on your Jakarta EE 10 server. +
This file contains the grant statements used by the test harness,
signature tests, and API tests.

.. Append the file `<TS_HOME>/bin/client_policy.append` to the
application client's Java policy file, which is referenced in the
`TestExecuteAppClient` section of the `ts.jte` file.

.. Make the appropriate transaction interoperability setting on the
Jakarta EE 10 server and the server that is running the Jakarta EE 10 CI. +

.. If necessary, refer to the sections later in this chapter for
additional configuration information you may require for your particular
test goals. +

.. Restart your Jakarta EE 10 server.

.. Build the special Web services clients. +
This step may be bypassed at this time if you are not going to
immediately run the tests under
`<TS_HOME>/src/com/sun/ts/tests/webservices12`. However, you must return
to this configuration section and complete it in order to run these
tests. +
The special Web services tests under the `webservices12/specialcases`
directory have prebuilt endpoints, but the clients are not prebuilt. The
clients will be built after the endpoints are first predeployed to the
application server under test. +
During the build the clients import the WSDLs (by means of the Jakarta EE
`wsimport` and `wsgen` tools) from the predeployed Web services
endpoints. This process verifies that importing a WSDL from a
predeployed Web service endpoint works properly.

.. Install the Jakarta EE 10 CI.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 59

.. Set the following properties in your `<TS_HOME>/bin/ts.jte` file. +
The current values should be saved since they will be needed later in this step.

* Set the `javaee.home.ri` property to the location where the Jakarta EE 10
CI is installed.

* Set the `wsgen.ant.classname` property to the Jakarta EE 10 application
server Ant task that in turn calls the `wsimport` Java-to-WSDL tool. It
must be set to:
+
[source,oac_no_warn]

com.sun.tools.ws.ant.WsGen

+
* Set the `wsgen.classpath` property to:
+
[source,oac_no_warn]

${javaee.classes.ri}:${tools.jar}

+
* Set the `wsimport.ant.classname` property to the Jakarta EE 10 application
server Ant task that in turn calls the `wsimport` WSDL-to-Java tool. +
It must be set to `com.sun.tools.ws.ant.WsImport`

* Set the `wsimport.classpath` property to the following value:
+
[source,oac_no_warn]

${javaee.classes.ri}:${tools.jar}

+
.. Build the special Web services clients by executing the following command:
+
[source,oac_no_warn]

ant build.special.webservices.clients

+
This predeploys all the special Web services endpoints, builds all the
special webservices clients, and then undeploys the special webservices
endpoints. See link:portingpackage.html#GKLJO[Section 11.2.2, "Ant-Based
Deployment Interface,"] for more information about the Ant-based

Preface

60 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

deployment interface, including guidelines for creating your own
Ant-based deployment implementation.

.. Once this command completes successfully, the following `ts.jte`
properties must be set back to their previous values:

* `wsgen.ant.classname`

* `wsgen.classpath`

* `wsimport.ant.classname`

* `wsimport.classpath`

.. The following `webservices12-url-props.dat` properties must be set
back to their original values:

* `specialcases.defaultserviceref.wsdlloc`

* `specialcases.nameattrserviceref.wsdlloc`

* `specialcases.providerserviceref.wsdlloc`

. Continue on to link:using.html#GBFWO[Chapter 7, "Executing Tests"].

[[GEXPP]][[modifying-environment-settings-for-specific-technology-tests]]

5.4 Modifying Environment Settings for Specific Technology Tests
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Before you can run any of the technology-specific Jakarta EE 10 Platform TCK tests,
you must supply certain information that JavaTest needs to run the tests
in your particular environment. This information exists in the
`<TS_HOME>/bin/ts.jte` environment file. This file contains sets of
name/value pairs that are used by the tests. You need to assign a valid
value for your environment for all of the properties listed in the
sections that follow.

[NOTE]
=======================================================================

This section only discusses a small subset of the properties you can
modify. Refer to the `ts.jte` file for information about the many other
properties you may want to modify for your particular test environment.

=======================================================================

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    61



This section includes the following topics:

* link:#GEXQT[Test Harness Setup]
* link:#GEXOS[Windows-Specific Properties]
* link:#GEXPE[Test Execution Command Setup]
* link:#GEXPB[Jakarta Servlet Test Setup]
* link:#CBDDGJFC[Jakarta WebSocket Test Setup]
* link:#GEXON[JDBC Test Setup]
* link:#GEXOT[Jakarta Mail Test Setup]
* link:#GEXPU[Jakarta XML Registry Test Setup]
* link:#GJKPO[Jakarta RESTful Web Services Test Setup]
* link:#GEXOF[Jakarta Connector Test Setup]
* link:#GEXPV[XA Test Setup]
* link:#GKKOJ[Jakarta Enterprise Beans 4.0 Test Setup]
* link:#GEXOX[Jakarta Enterprise Beans Timer Test Setup]
* link:#GEXQB[Entity Bean Container-Managed Persistence Test Setup for Jakarta
Enterprise Beans V 1.1]
* link:#GEXOL[Jakarta Persistence API Test Setup]
* link:#GEXPT[Jakarta Messaging Test Setup]
* link:#GKWVB[Jakarta Authentication Test Setup]
* link:#GEYBI[Jakarta Authorization Test Setup]
* link:#GEYAM[WSDL: Webservice Test and Runtime Notes]
* link:#CEGCHDEA[Jakarta Security API Test Setup]
* link:#GEYNX[Signature Test Setup]
* link:#GJLGQ[Backend Database Setup]

[[GEXQT]][[test-harness-setup]]

5.4.1 Test Harness Setup
^^^^^^^^^^^^^^^^^^^^^^^^

Verify that the following properties, which are used by the test
harness, have been set in the `<TS_HOME>/bin/ts.jte` file:

[source,oac_no_warn]
----
harness.temp.directory=<TS_HOME>/tmp
harness.log.port=2000
harness.log.traceflag=[true | false]
deployment_host.1=<hostname>
deployment_host.2=<hostname>
porting.ts.deploy2.class.1=<vendor-deployment-class>
porting.ts.login.class.1=<vendor-login-class>
porting.ts.url.class.1=<vendor-url-class>
porting.ts.jms.class.1=<vendor-jms-class>
porting.ts.tsHttpsURLConnection.class.1=<vendor-HttpsURLConnection-class>
----

Preface

62    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



* The `harness.temp.directory` property specifies a temporary directory
that the harness creates and to which the TCK harness and tests write
temporary files. The default setting should not need to be changed.

* The `harness.log.port` property specifies the port that server
components of the tests use to send logging output back to JavaTest. If
the default port is not available on the machine running JavaTest, you
must edit this property and set it to an available port. The default
setting is `2000`.

* The `harness.log.traceflag` property is used to turn on or turn off
verbose debugging output for the tests. The value of the property is set
to `false` by default. Set the property to `true` to turn debugging on.

* The `deployment_host.1` and `deployment_host.2` properties specify the
systems where the vendor's Jakarta Platform, Enterprise Edition server and
the Jakarta Platform, Enterprise Edition CI server are running. By default,
JavaTest will use the `orb.host` and `orb.host.ri` systems, which are
set in the `ts.jte` file.

* The porting class `.1` and `.2` property sets specify the class names
of porting class implementations. By default, both property sets point
to the Jakarta Platform, Enterprise Edition CI-specific classes. To run the
interoperability tests, do not modify the `.2` set. These properties
should always point to the Jakarta Platform, Enterprise Edition CI classes.
Modify the `.1` set to point to implementations that work in your
specific Jakarta Platform, Enterprise Edition environment.

* The `-Dcts.tmp` option for the `testExecute` and
`testExecuteAppClient` commands in the `ts.jte` file have been set. This
Java option tells the test suite the location to which the test suite
will write temporary files.

[[GEXOS]][[windows-specific-properties]]

5.4.2 Windows-Specific Properties
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When configuring the Jakarta EE 10 Platform TCK for the Windows environment, set the
following properties in `<TS_HOME>/bin/ts.jte`:

* `pathsep` to semicolon (pathsep=`;`)

* `s1as.applicationRoot` to the drive on which you have installed CTS
(for example, `s1as.applicationRoot=C:`) +
When installing in the Windows environment, the Jakarta Platform,
Enterprise Edition CI, JDK, and TCK should all be installed on the same

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    63



drive. If you must install these components on different drives, also
change the `ri.applicationRoot` property in addition to the `pathsep`
and `s1as.applicationRoot` properties; for example: +
[source,oac_no_warn]
----
ri.applicationRoot=C:
----

[NOTE]
=======================================================================

When configuring the CI and TCK for the Windows environment, never
specify drive letters in any path properties in `ts.jte`.

=======================================================================

[[GEXPE]][[test-execution-command-setup]]

5.4.3 Test Execution Command Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The test execution command properties are used by the test harness. By
default, the `ts.jte` file defines a single command line for each of the
commands that is used for both UNIX and Windows environments.

* `command.testExecute`

* `command.testExecuteAppClient`

* `command.testExecuteAppClient2`

If these commands do not meet your needs, you can define separate
entries for the UNIX and Windows environments. Edit either the `ts_unix`
or `ts_win32` test execution properties in the `ts.jte` file. For UNIX,
these properties are:

* `env.ts_unix.command.testExecute`

* `env.ts_unix.command.testExecuteAppClient`

* `env.ts_unix.command.testExecuteAppClient2`

For Windows, these properties are:

* `env.ts_win32.command.testExecute`

Preface

64    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



* `env.ts_win32.command.testExecuteAppClient`

* `env.ts_win32.command.testExecuteAppClient2`

The `testExecute` property specifies the Java command that is used to
execute individual tests from a standalone URL client. Tests in which
the client directly invokes a web component (Jakarta Servlet or Jakarta Server
Pages), use this
command line since there is no application client container involved.

[NOTE]
=======================================================================

The default settings are specific to the Jakarta Platform, Enterprise
Edition CI. If you are not using the Jakarta Platform, Enterprise Edition
CI, adjust these properties accordingly.

=======================================================================

[[GEXPB]][[jakarta-servlet-test-setup]]

5.4.4 Jakarta Servlet Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Make sure that the following servlet properties have been set in the
`ts.jte` file:

[source,oac_no_warn]
----
ServletClientThreads=[2X size of default servlet instance pool]
servlet_waittime=[number_of_milliseconds]
servlet_async_wait=[number_of_seconds]
logical.hostname.servlet=server
s1as.java.endorsed.dirs=${endorsed.dirs}${pathsep}${ts.home}/endorsedlib
----

The `servlet_waittime` property specifies the amount of time, in
milliseconds, to wait between the time when the `HttpSession` is set to
expire on the server and when the `HttpSession` actually expires on the
client. This time is configurable to allow the servlet container enough
time to completely invalidate the `HttpSession`. The default value is 10
milliseconds.

The test `serverpush` in Jakarta Servlet 6.0, uses `httpclient`, a new library
in JDK9 that depends on `java.util.concurrent.flow` (also new class in JDK9).

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    65



The `servlet_async_wait` property sets the duration of time in seconds
to wait between sending asynchronous messages. This property is used in
place to test non-interrupted IO, where two messages are sent in two
different batches and the receiving end will be read in a different read
cycle. This property sets the time to wait in seconds on the sending
side. The default is 4 seconds.

The `logical.hostname.servlet` property identifies the configuration
name of the logical host on which the `ServletContext` is deployed. This
used to identify the name of a logical host that processes Jakarta EE 10
requests. Jakarta EE 10 requests may be directed to a logical host using
various physical or virtual host names or addresses, and a message
processing runtime may be composed of multiple logical hosts. The
`logical.hostname.servlet` property is required to properly identify the
Jakarta EE 10 profile's `AppContextId` hostname. This property is used by
the Jakarta EE 10 security tests as well as by the
`ServletContext.getVirtualServerName()` method. If a
`logical.hostname.servlet` does not exist, set this property to the
default hostname (for example, `webServerHost`). The default is
"server".

[[CBDDGJFC]][[jakarta-websocket-test-setup]]

5.4.5 Jakarta WebSocket Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Make sure that the following WebSocket property has been set in the
`ts.jte` file:

[source,oac_no_warn]
----
ws_wait=[number_of_seconds]
----

The `ws_wait` property configures the wait time, in seconds, for the
socket to send or receive a message. A multiple of 5 of this time is
also used to test socket timeouts.

The Jakarta WebSocket tests also use the following properties: `webServerHost`
and `webServerPort`. See link:#GEWUI[Section 5.3.2, "Configuring the
Jakarta EE 10 CI as the VI,"] for more information about setting these
properties.

[NOTE]
=======================================================================

Preface

66    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



The SSL related tests under
`/ts/javaeetck/src/com/sun/ts/tests/websocket/platform/jakarta/websocket/server/hands
hakerequest/authenticatedssl/`
use self signed certificate bundled with the TCK bundle. These
certificates are generated with localhost as the hostname and would work
only when orb.host value is set to localhost in ts.jte. If the server's
hostname is used instead of the localhost, the tests in this suite might
fail with the below exception - jakarta.websocket.DeploymentException: SSL
handshake has failed.

=======================================================================

[[GEXON]][[jdbc-test-setup]]

5.4.6 JDBC Test Setup
^^^^^^^^^^^^^^^^^^^^^

The JDBC tests require you to set the timezone by modifying the `tz`
property in the `ts.jte` file. On Solaris systems, you can check the
timezone setting by looking in the file `/etc/default/init`. Valid
values for the `tz` property are in the directory
`/usr/share/lib/zoneinfo`. The default setting is `US/Eastern`. This
setting is in `/usr/share/lib/zoneinfo/US`.

[NOTE]
=======================================================================

The `tz` property is only used for Solaris configurations; it does not
apply to Windows XP/2000.

=======================================================================

[[GEXOT]][[jakarta-mail-test-setup]]

5.4.7 Jakarta Mail Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Complete the following tasks before you run the Jakarta Mail tests:

.  Set the following properties in the `ts.jte` file:
+
[source,oac_no_warn]
----
mailuser1=[user@domain]
mailFrom=[user@domain]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    67



mailHost=mailserver
javamail.password=password
----
+
* Set the `mailuser1` property to a valid mail address. Mail messages
generated by the Jakarta Mail tests are sent to the specified address. This
user must be created in the IMAP server.

* Set the `mailFrom` property to a mail address from which mail messages
that the Jakarta Mail tests generate will be sent.

* Set the `mailHost` property to the address of a valid mail server
where the mail will be sent.

* Set the `javamail.password` property to the password for `mailuser1`.

.  Populate your IMAP server with sample messages. +
Change to the `<TS_HOME>/bin` directory and execute the Ant target
`populateMailbox` to create the sample messages in your IMAP server.
+
[source,oac_no_warn]
----
cd <TS_HOME>/bin
ant populateMailbox
----

[[GJKPO]][[jakarta-restful-web-services-test-setup]]

5.4.8 Jakarta RESTful Web Services Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This section explains how to set up the test environment to run the
Jakarta RESTful Web Services tests using the Jakarta EE 10 Compatible Implementation
and/or a
Vendor Implementation. This setup also includes steps for
packaging/repackaging and publishing the packaged/repackaged WAR files
as well.

[[GJYCL]][[to-configure-your-environment-to-run-the-jakarta-restful-web-services-
tests-against-the-jakarta-ee-8-ci]]

5.4.8.1 To Configure Your Environment to Run the Jakarta RESTful Web Services Tests
Against the Jakarta EE 10 CI
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++

Copy <TS_HOME>/bin/ts.jte.jdk11 as <TS_HOME>/bin/ts.jte if JAVA_HOME is Java SE 11.
Edit your `<TS_HOME>/bin/ts.jte` file and set the following environment

Preface

68    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



variables:

.  Set the `jaxrs_impl_lib` property to point to the Jakarta RESTful Web Services CI.
+
The default setting for this property is
`${javaee.home}/modules/jersey-container-servlet-core.jar` .

.  Set the `servlet_adaptor` property to point to the Servlet adapter
class for the Jakarta RESTful Web Services implementation. +
The default setting for this property is
`org/glassfish/jersey/servlet/ServletContainer.class`, the servlet
adaptor supplied in Jersey.

.  Set the `jaxrs_impl_name` property to the name of the Jakarta RESTful Web Services
CI. +
The default setting for this property is `jersey`. +
An Ant script, jersey.xml, in the `<TS_HOME>/bin/xml/impl/glassfish`
directory contains packaging instructions.

[[GJYBC]][[to-package-war-files-for-deployment-on-the-jakarta-ee-8-ci]]

5.4.8.2 To Package WAR files for Deployment on the Jakarta EE 10 CI
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

The Jakarta EE 10 Platform TCK test suite does not come with prebuilt test WAR files
for deployment on Jakarta EE 10 CI. The test suite includes a command to
generate the test WAR files that will be deployed on the Jakarta EE 10 CI.
The WAR files are Jersey-specific, with Jersey's servlet class and
Eclipse Jersey's servlet defined in the `web.xml` deployment descriptor.

To package the Jakarta RESTful Web Services WAR files for deployment on the Jakarta
EE 10 CI,
complete the following steps:

.  Change to the `<TS_HOME>/bin` directory.

.  Execute the `update.jaxrs.wars` Ant target. +
In a test WAR files that has the `servlet_adaptor` property defined,
this target replaces the `servlet_adaptor` value of the servlet class
name property in the `web.xml` file of the WAR files to be deployed on
the Jakarta EE 10 CI.

[[GJYBR]][[to-configure-your-environment-to-run-the-jakarta-restful-web-services-
tests-against-a-vendor-implementation]]

5.4.8.3 To Configure Your Environment to Run the Jakarta RESTful Web Services Tests
Against a Vendor Implementation
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    69



++++++++++++++++++++++++++++++

Complete the following steps to configure your test environment to run
the Jakarta RESTful Web Services tests against your vendor implementation. Before you
can run
the tests, you need to repackage the WAR files that contain the Jakarta RESTful Web
Services
tests and the VI-specific Servlet class that will be deployed on the
vendor's Jakarta EE 10-compliant application server.

Copy <TS_HOME>/bin/ts.jte.jdk11 as <TS_HOME>/bin/ts.jte if JAVA_HOME is Java SE 11.
Edit your `<TS_HOME>/bin/ts.jte` file and set the following properties:

.  Set the `jaxrs_impl_lib` property to point to the JAR file that
contains the vendor's Jakarta RESTful Web Services Servlet adapter implementation. +
The default setting for this property is
`${javaee.home}/modules/jersey-container-servlet-core.jar` .

.  Set the `servlet_adaptor` property to point to the Servlet adapter
class for the vendor's Jakarta RESTful Web Services implementation. +
The class must be located in the JAR file defined by the
`jaxrs_impl_lib` property. By default, this property is set to
`org/glassfish/jersey/servlet/ServletContainer.class`, the servlet
adapter supplied in Jersey.

.  Set the `jaxrs_impl_name` property to the name of the Jakarta RESTful Web Services
vendor
implementation to be tested. +
The name of the property must be unique. An Ant file bearing this name,
<jaxrs_impl_name>.xml, should be created under
`<TS_HOME>/bin/xml/impl/${impl.vi}` with packaging and/or deployment
instructions as described in link:#GJYDD[Section 5.4.9.4, "To Repackage
WAR files for Deployment on the Vendor Implementation."] +
The default setting for this property is `jersey`.

[[GJYDD]][[to-repackage-war-files-for-deployment-on-the-vendor-implementation]]

5.4.8.4 To Repackage WAR files for Deployment on the Vendor Implementation
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

To run the Jakarta RESTful Web Services tests against a vendor's implementation in a
Jakarta EE
8-compliant application server, the tests need to be repackaged to
include the VI-specific servlet, and the VI-specific servlet must be
defined in the deployment descriptor.

A vendor must create VI-specific Jakarta EE 10-compliant WAR files so the
VI-specific Servlet class will be included instead of the Jakarta EE 10

Preface

70    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



CI-specific Servlet class.

All resource and application class files are already compiled. The
Vendor needs to package these files. Jakarta EE 10 Platform TCK makes this task
easier by including template WAR files that contain all of the necessary
files except for the VI-specific servlet adaptor class. The Jakarta EE 10
TCK also provides a tool to help with the repackaging task.

Each test that has a Jakarta RESTful Web Services resource class to publish comes
with a
template deployment descriptor file. For example, the file
`<TS_HOME>/src/com/sun/ts/tests/jaxrs/ee/rs/get/web.xml.template`
contains the following elements:

[source,oac_no_warn]
----
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee" \
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" \
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee \
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
    <servlet>
        <servlet-name>CTSJAX-RSGET</servlet-name>
        <servlet-class>servlet_adaptor</servlet-class>
        <init-param>
            <param-name>jakarta.ws.rs.Application</param-name>
            <param-value>com.sun.ts.tests.jaxrs.ee.rs.get.TSAppConfig</param-value>
        </init-param>
        <load-on-startup>1</load-on-startup>
    </servlet>
    <servlet-mapping>
        <servlet-name>CTSJAX-RSGET</servlet-name>
        <url-pattern>/*</url-pattern>
    </servlet-mapping>
    <session-config>
        <session-timeout>30</session-timeout>
    </session-config>
</web-app>
----

In this example, the `<servlet-class>` element has a value of
`servlet_adaptor`, which is a placeholder for the
implementation-specific Servlet class. An Eclipse Jersey-specific deployment
descriptor also comes with the Jakarta EE 10 CI, Eclipse GlassFish 6.1, and has the
values for the
`com.sun.jersey.spi.container.servlet.ServletContainer`:

[source,oac_no_warn]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    71



----
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee" \
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" \
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee \
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
   <servlet>
        <servlet-name>CTSJAX-RSGET</servlet-name>
        <servlet-class>
        org.glassfish.jersey.servlet.ServletContainer
        </servlet-class>
        <init-param>
            <param-name>jakarta.ws.rs.Application</param-name>
            <param-value>com.sun.ts.tests.jaxrs.ee.rs.get.TSAppConfig</param-value>
        </init-param>
        <load-on-startup>1</load-on-startup>
    </servlet>
    <servlet-mapping>
        <servlet-name>CTSJAX-RSGET</servlet-name>
        <url-pattern>/*</url-pattern>
    </servlet-mapping>
    <session-config>
        <session-timeout>30</session-timeout>
        </session-config>
</web-app>
----

The Jakarta EE 10 Platform TCK test suite provides a tool,
`${ts.home}/bin/xml/impl/glassfish/jersey.xml`, for the Jakarta EE 10 CI
that you can use as a model to help you create your own VI-specific Web
test application.

The following steps explain how to create a VI-specific deployment
descriptor.

.  Create a VI handler file. +
Create a VI-specific handler file
`<TS_HOME>/bin/xml/impl/${impl.vi}/${jaxrs_impl_name}.xml` if one does
not already exist. +
Ensure that the `jaxrs_impl_name` property is set in the `ts.jte` file
and that its name is unique, to prevent another file with the same name
from being overwritten.

.  Set the `servlet_adaptor` property in the `ts.jte` file. +
This property will be used to set the value of the `<servlet-class>`
element in the deployment descriptor.

.  Create VI Ant tasks. +

Preface

72    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



Create a `update.jaxrs.wars` target in the VI handler file. Reference
this `update.jaxrs.wars` target in the `jersey.xml` file. +
This target will create a `web.xml.${jaxrs_impl_name}` for each test
that has a deployment descriptor template. The
`web.xml.${jaxrs_impl_name)` will contain the VI-specific Servlet class
name. It will also create the test WAR files will be created under the
`<TS_HOME>/dist` directory. For example:
+
[source,oac_no_warn]
----
cd $TS_HOME/dist/com/sun/ts/tests/jaxrs/ee/rs/get/
ls jaxrs_rs_get_web.war.jersey
jaxrs_rs_get_web.war.${jaxrs_impl_name}

----
+
.  Change to the `<TS_HOME>/bin` directory and execute the
`update.jaxrs.wars` Ant target. +
This creates a `web.xml.${jaxrs_impl_name}` file for each test based on
the VI's servlet class name and repackages the tests.

[[GEXOF]][[jakarta-connector-test-setup]]

5.4.9 Jakarta Connector Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Jakarta Connector tests verify that a Jakarta EE 10 server correctly implements
the Jakarta Connector V1.7 specification. The Connector compatibility tests
ensure that your Jakarta EE 10 server still supports the Connector V1.0
functionality.

The `config.vi` target is run to configure the Jakarta EE 10 server for
running Connector tests. The `config.vi` target calls the
`config.connecto`r target, which is defined in
`TS_HOME/bin/xml/impl/glassfish/s1as.xml`, to deploy the RAR files
listed in link:#GJVGT[Section 5.4.10.1, "Extension Libraries."] and
create the required connection resources and connection pools used for
the Connector tests. The `config.vi` target also performs several other
tasks, such as creating required users and security mappings, setting
appropriate JVM options, etc. that also are needed to run the Connector
tests.

[[GJVGT]][[extension-libraries]]

5.4.9.1 Extension Libraries
++++++++++++++++++++++++++++

The following Connector files are deployed as part of the `config.vi`

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    73



Ant target:

* `whitebox-mixedmode.rar`
* `whitebox-tx-param.rar`
* `whitebox-multianno.rar`
* `whitebox-tx.rar`
* `whitebox-anno_no_md.rar`
* `whitebox-notx-param.rar`
* `whitebox-xa-param.rar`
* `whitebox-mdcomplete.rar`
* `whitebox-notx.rar`
* `whitebox-xa.rar`
* `old-dd-whitebox-notx-param.rar`
* `old-dd-whitebox-xa-param.rar`
* `old-dd-whitebox-tx.rar`
* `old-dd-whitebox-notx.rar`
* `old-dd-whitebox-xa.rar`
* `old-dd-whitebox-tx-param.rar`

[NOTE]
=======================================================================

RAR files with an `old` prefix are used to test the support of RAs that
are bundled with an older version of the `ra.xml` files.

=======================================================================

The manifest file in each RAR file includes a reference to the whitebox
extension library. The `whitebox.jar` file is a Shared Library that must
be deployed as a separate entity that all the Jakarta Connector RAR files
access. This extension library is needed to address classloading issues.

The RAR files that are used with Jakarta EE 10 Platform TCK test suite differ from
those that were used in earlier test suites. Jakarta EE 10 Platform TCK no longer
bundles the same common classes into every RAR file. Duplicate common
classes have been removed and now exist in the `whitebox.jar` file, an
Installed Library that is deployed and is made available before any
other RAR files are deployed.

This was done to address the following compatibility issues:

* Portable use of Installed Libraries for specifying a resource
adapter's shared libraries +
See section EE.8.2.2 of the Jakarta EE 10 platform specification and section
20.2.0.1 in the Jakarta Connectors (formerly JCA) 1.7 specification, which explicitly
state that the

Preface

74    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



resource adapter server may employ the library mechanisms in Jakarta EE 10.

* Support application-based standalone connector accessibility +
Section 20.2.0.4 of the Jakarta Connectors (formerly JCA) 1.7 Specification uses the
classloading
requirements that are listed in section 20.3 in the specification.

[[GJVGO]][[connector-resource-adapters-and-classloading]]

5.4.9.2 Connector Resource Adapters and Classloading
+++++++++++++++++++++++++++++++++++++++++++++++++++++

Jakarta EE 10 Platform TCK has scenarios in which multiple standalone RAR files that
use the same shared library (for example, `whitebox.jar`) are referenced
from an application component.

Each standalone RAR file gets loaded in its own classloader. Since the
application component refers to more than one standalone RAR file, all
of the referenced standalone RAR files need to be made available in the
classpath of the application component. In versions of the TCK prior to
Java EE 5, since each standalone RAR file contained a copy of the
`whitebox.jar` file, every time there was a reference to a class in the
`whitebox.jar` file from a standalone RAR, the reference was resolved by
using the private version of `whitebox.jar` (the `whitebox.jar` file was
bundled in each standalone RAR file). This approach can lead to class
type inconsistency issues.

[[GJVHD]][[use-case-problem-scenario]]

5.4.9.3 Use Case Problem Scenario
++++++++++++++++++++++++++++++++++

Assume that RAR1 and RAR2 are standalone RAR files that are referred to
by an application, where:

* RAR1's classloader has access to RAR1's classes and its copy of
`whitebox.jar`. (RAR1's classloader contains RAR1's classes and
`whitebox.jar`)

* RAR2's classloader has access to RAR2's classes and its copy of
`whitebox.jar`. (RAR2's classloader contains RAR2's classes and
`whitebox.jar`)

When the application refers to both of these RAR files, a classloader
that encompasses both of these classloaders (thereby creating a
classloader search order) is provided to the application. The
classloader search order could have the following sequence: ([RAR1's
Classloader: RAR1's classes and whitebox.jar], [RAR2's Classloader:

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    75



RAR2's classes and whitebox.jar]).

In this scenario, when an application loads a class (for example, class
`Foo`) in `whitebox.jar`, the application gets class `Foo` from RAR1's
classloader because that is first in the classloader search order.
However, when this is cast to a class (for example, `Foo` or a subclass
of `Foo` or even a class that references `Foo`) that is obtained from
RAR2's classloader (a sequence that is typically realized in a
`ConnectionFactory` lookup), this would result in a class-cast
exception.

The portable way of solving the issues raised by this use case problem
scenario is to use installed libraries, as described in section EE.8.2.2
in the Jakarta EE 10 platform specification. If both RAR files (RAR1 and
RAR2) reference `whitebox.jar` as an installed library and the
application server can use a single classloader to load this common
dependency, there will be no type-related issues.

In the CI Eclipse GlassFish 6.1, `domain-dir/lib/applibs` is used as the Installed
Library
directory and is the location to which the `whitebox.jar` file gets
copied.

[[GJVHK]][[required-porting-package]]

5.4.9.4 Required Porting Package
+++++++++++++++++++++++++++++++++

The Jakarta EE 10 Platform TCK test suite treats the `whitebox.jar` dependency as an
Installed Library dependency instead of bundling the dependency (or
dependencies) with every RAR file. Each RAR file now contains a
reference to the `whitebox.jar` file through its Manifest files
Extension-List attribute.

It is necessary to identify the `whitebox.jar` to the connector server
as an installed library. The mechanism used to identify the
`whitebox.jar` file to the connector server as an Installed Library must
allow the Installed Libraries to have dependencies on Jakarta EE APIs. In
other words, because the `whitebox.jar` file depends on Jakarta EE APIs,
one cannot simply put the `whitebox.jar` file into a `java.ext.dir`
directory , which gets loaded by the VM extension classloader, because
that mechanism does not allow the `whitebox.jar` file to support its
dependencies on the Jakarta EE APIs. For this reason, the Installed Library
must support access to the Jakarta EE APIs.

See section EE.8.2.2 in the Jakarta EE 10 platform specification for
information about the compatible implementation's support for Installed
libraries. However, note that this section does not recommend a

Preface

76    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



mechanism that a deployer can use to provide Installed Libraries in a
portable manner.

[[GJVHH]][[creating-security-mappings-for-the-connector-rar-files]]

5.4.9.5 Creating Security Mappings for the Connector RAR Files
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

The Ant target `create.security.eis.mappings` in the
`<TS_HOME>/bin/xml/impl/glassfish/connector.xml` file maps Resource
Adapter user information to existing user information in the CI.

For the Eclipse GlassFish 6.1 CI, these mappings add a line to the `domain.xml` file,
similar
to the one shown below, and should include 6 of these mappings:

[source,oac_no_warn]
----
<jvm-options>-Dwhitebox-tx-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-tx-param-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-notx-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-notx-param-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-xa-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-xa-param-map=cts1=j2ee</jvm-options>
----

If the `rauser1` property has been set to `cts1` and the `user` property
has been set to `j2ee` in the `ts.jte` file, the following mappings
would be required in the connector runtime:

* For RA `whitebox-tx`, map `cts1` to `j2ee`
* For RA `whitebox-tx-param`, map `cts1` to `j2ee`
* For RA `whitebox-notx`, map `cts1` to `j2ee`
* For RA `whitebox-notx-param`, map `cts1` to `j2ee`
* For RA `whitebox-xa`, map `cts1` to `j2ee`
* For RA `whitebox-xa-param`, map `cts1` to `j2ee`

[[GJVGX]][[creating-required-server-side-jvm-options]]

5.4.9.6 Creating Required Server-Side JVM Options
++++++++++++++++++++++++++++++++++++++++++++++++++

Create the required JVM options that enable user information to be set
and/or passed from the `ts.jte` file to the server. The RAR files use
some of the property settings in the `ts.jte` file.

To see some of the required JVM options for the server under test, see
the `s1as.jvm.options` property in the `ts.jte` file. The connector

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    77



tests require that the following subset of JVM options be set in the
server under test:

[source,oac_no_warn]
----
-Dj2eelogin.name=j2ee
-Dj2eelogin.password=j2ee
-Deislogin.name=cts1
-Deislogin.password=cts1
----

[[GEXPV]][[xa-test-setup]]

5.4.10 XA Test Setup
^^^^^^^^^^^^^^^^^^^^

The XA Test setup requires that the `ejb_Tsr.ear` file be deployed as
part of the `config.vi` Ant target. The `ejb_Tsr.ear` file contains an
embedded RAR file, which requires the creation of a connection-pool and
a connector resource.

For more details about the deployment of `ejb_Tsr.ear` and its
corresponding connection pool and connector resource values, see the
`setup.tsr.embedded.rar` Ant target in the
`<TS_HOME>/bin/xml/impl/glassfish/s1as.xml` file.

The XA tests reference some `JDBCWhitebox` name bindings that are
created as part of the `config.vi` target but those name bindings are
not tied to any JDBC RAR files. Instead, the following XA-specific
connection pool ids are referenced by the XA tests:

* `eis/JDBCwhitebox-xa`
* `eis/JDBCwhitebox-tx`
* `eis/JDBCwhitebox-notx`

For more details on these JDBC resources, examine the
`add.jdbc.resources` target in the same file to see the required JDBC
resources that are created. Both targets are called as part of the
`config.vi` target.

Complete the following steps (create JDBC connection pools and JDBC
resource elements, deploy the RAR files) to set up your environment to
run the XA tests:

.  Create a JDBC connection pool with the following attributes:

* Set the resource type to `javax.sql.XADataSource`

Preface

78    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



* Set the datasourceclassname to
`org.apache.derby.jdbc.EmbeddedXADataSource`

* Set the property to
`DatabaseName=<Derby-location>:user=cts1:password=cts1`

* Set the connection pool name to `cts-derby-XA-pool` +
For example, you could use the `asadmin` command line utility in the
Jakarta EE 10 CI, Eclipse GlassFish 6.1 to create this connection pool:
+
[source,oac_no_warn]
----
asadmin create-jdbc-connection-pool --restype javax.sql.XADataSource \
--datasourceclassname org.apache.derby.jdbc.EmbeddedXADataSource  \
--property 'DatabaseName=/tmp/DerbyDB:user=cts1:password=cts1' \
cts-derby-XA-pool
----
+
See the `add.jdbc.pools` Ant target in the `s1as.xml` file for
additional information.

.  Create three JDBC connection pool elements (more specifically, the
JDBC connection pool elements) with the following JNDI names:

* For the first connection pool element, set the connection pool id to
`cts-derby-XA-pool` and the JNDI name to `eis/JDBCwhitebox-xa`

* For the second connection pool element, set the connection pool id to
`cts-derby-XA-pool` and the JNDI name to `eis/JDBCwhitebox-tx`

* For the third connection pool element, set the connection pool id to
`cts-derby-XA-pool` and the JNDI name to `eis/JDBCwhitebox-notx` +
For example, you could use the `asadmin` command line utility in the
Jakarta EE 10 CI to create the three connection pool elements:
+
[source,oac_no_warn]
----
asadmin  asadmin  create-jdbc-resource --connectionpoolid cts-derby-XA-pool \
 eis/JDBCwhitebox-xa
asadmin  create-jdbc-resource --connectionpoolid cts-derby-XA-pool \
 eis/JDBCwhitebox-tx
asadmin  create-jdbc-resource --connectionpoolid cts-derby-XA-pool \
 eis/JDBCwhitebox-notx
----
+
If two or more JDBC resource elements point to the same connection pool
element, they use the same pool connection at runtime. Jakarta EE 10 Platform TCK
does reuse the same connection pool ID for testing the Jakarta EE 10 CI Eclipse

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    79



GlassFish 6.1.

.  Make sure that the following EIS and RAR files have been deployed
into your environment before you run the XA tests:

* For the EIS resource adapter, deploy the following RAR files. Most of
these files are standalone RAR files, but there is also an embedded RAR
file that is contained in the `ejb_Tsr.ear` file. With the CI, these RAR
files are deployed as part of the config.vi Ant task. The following RAR
files are defined in the `ts.jte` file.
+
[source,oac_no_warn]
----
whitebox-tx=java:comp/env/eis/whitebox-tx
whitebox-notx=java:comp/env/eis/whitebox-notx
whitebox-xa=java:comp/env/eis/whitebox-xa
whitebox-tx-param=java:comp/env/eis/whitebox-tx-param
whitebox-notx-param=java:comp/env/eis/whitebox-notx-param
whitebox-xa-param=java:comp/env/eis/whitebox-xa-param
whitebox-embed-xa=
"__SYSTEM/resource/ejb_Tsr#whitebox-
xa#com.sun.ts.tests.common.connector.whitebox.TSConnectionFactory"
----
+
* The embedded RAR files are located in the
`<TS_HOME>/src/com/sun/ts/tests/xa/ee/tsr` directory.

* The EIS RAR files are located in the following directory:
`<TS_HOME>/src/com/sun/ts/tests/common/connector/whitebox` +
RAR files in the `<TS_HOME>/src/com/sun/ts/tests/common/connector`
directory must be built before any dependent tests can pass. Deployment
can either be done ahead of time or at runtime, as long as connection
pools and resources are established prior to test execution. +
The XA tests make use of existing connector RAR files, which typically
get deployed when the `config.vi` Ant task is run. Note that there are
currently no `JDBCwhitebox` source files and no `JDNCwhitebox` RAR
files.

[[GKKOJ]][[jakarta-enterprise-beans-3.2-test-setup]]

5.4.11 Jakarta Enterprise Beans 4.0 Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This section explains special configuration that needs to be completed
before running the Jakarta Enterprise Beans 4.0 DataSource and Stateful Timeout
tests.

The Jakarta Enterprise Beans 4.0 DataSource tests do not test XA capability and XA

Preface

80    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



support in
a database product is typically not required for these tests. However,
some Jakarta EE products could be implemented in such a way that XA must be
supported by the database. For example, when processing the
@DataSourceDefinition annotation or `<data-source>` descriptor elements
in tests, a Jakarta EE product infers the datasource type from the
interface implemented by the driver class. When the driver class
implements multiple interfaces, such as `javax.sql.DataSource`,
`javax.sql.ConnectionPoolDataSource`, or `javax.sql.XADataSource`, the
vendor must choose which datasource type to use. If
`javax.sql.XADataSource` is chosen, the target datasource system must be
configured to support XA. Consult the documentation for your database
system and JDBC driver for information that explains how to enable XA
support.

[[GJYBW]][[to-configure-the-test-environment-to-run-the-jakarta-enterprise-beans-4.0-
datasource-tests]]

5.4.11.1 To Configure the Test Environment to Run the Jakarta Enterprise Beans 4.0
DataSource Tests
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++

The EJB 3.2 DataSource tests under the following `tests/ejb30`
directories require you to run the Ant task in Step link:#BABBGJAF[2].

* `com/sun/ts/tests/ejb30/lite/packaging/war/datasource`
* `com/sun/ts/tests/ejb30/misc/datasource`
* `com/sun/ts/tests/ejb30/assembly/appres`

If your database vendor requires you to set any vendor-specific or less
common DataSource properties, complete step link:#BABDIIGI[1] and then
complete step link:#BABBGJAF[2], as explained below.

.  [[BABDIIGI]] Set any vendor-specific or less common datasource properties with the
`jdbc.datasource.props` property in the `ts.jte` file. +
The value of the property is a comma-separated array of name-value
pairs, in which each property pair uses a `"name=value"` format,
including the surrounding double quotes. +
The value of the property must not contain any extra spaces. +
For example:
+
[source,oac_no_warn]
----
jdbc.datasource.props="driverType=thin","name2=vale2"
----
+
.  [[BABBGJAF]] Run the `configure.datasource.tests` Ant target to rebuild the

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    81



Jakarta Enterprise Beans 4.0
DataSource Definition tests using the new database settings specified in
the `ts.jte` file. +
This step must be completed for Jakarta EE 10 and Jakarta EE 10 Web Profile
testing.

[[GJYCF]][[to-configure-the-test-environment-to-run-the-jakarta-enterprise-beans-4.0-
stateful-timeout-tests]]

5.4.11.2 To Configure the Test Environment to Run the Jakarta Enterprise Beans 4.0
Stateful Timeout Tests
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++

The Jakarta Enterprise Beans 4.0 Stateful Timeout Tests in the following test
directories
require special setup:

* `com/sun/ts/tests/ejb30/lite/stateful/timeout`
* `com/sun/ts/tests/ejb30/bb/session/stateful/timeout`

.  Set the `javatest.timeout.factor` property in the `ts.jte` file to a
value such that the JavaTest harness does not time out before the test
completes. +
A value of 2.0 or greater should be sufficient.

.  Set the `test.ejb.stateful.timeout.wait.seconds` property, which
specifies the minimum amount of time, in seconds, that the test client
waits before verifying the status of the target stateful bean, to a
value that is appropriate for your server. +
The value of this property must be an integer number. The default value
is 480 seconds. This value can be set to a smaller number (for example,
240 seconds) to speed up testing, depending on the stateful timeout
implementation strategy in the target server.

[[GEXOX]][[jakarta-enterprise-beans-timer-test-setup]]

5.4.12 Jakarta Enterprise Beans Timer Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Set the following properties in the `ts.jte` file to configure the Jakarta Enterprise
Beans
timer tests:

[source,oac_no_warn]
----
ejb_timeout=[interval_in_milliseconds]
ejb_wait=[interval_in_milliseconds]

Preface

82    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



----

* The `ejb_timeout` property sets the duration of single-event and
interval timers. The default setting and recommended minimum value is
`30000` milliseconds.
* The `ejb_wait` property sets the period for the test client to wait
for results from the `ejbTimeout()` method. The default setting and
recommended minimum value is `60000` milliseconds.

Jakarta EE 10 Platform TCK does not have a property that you can set to configure the
date for date timers.

The timer tests use the specific `jndi-name` jdbc`/DBTimer` for the
datasource used for container-managed persistence to support the use of
an XA datasource in the Jakarta EE 10 timer implementation. For example:

[source,oac_no_warn]
----
<jdbc-resource enabled="true" jndi-name="jdbc/DBTimer"
               object-type="user" pool-name="cts-javadb-XA-pool" />
----

The test directories that use this datasource are:

[source,oac_no_warn]
----
ejb/ee/timer
ejb/ee/bb/entity/bmp/allowedmethostest
ejb/ee/bb/entity/cmp20/allowedmethodstest
----

When testing against the Jakarta Platform, Enterprise Edition CI, Eclipse GlassFish
6.1, you must
first start the Derby DB and initialize it in addition to any other database
you may be using, as explained in link:#GEWUI[Configuring the Jakarta EE 10
CI as the VI].

[[GEXQB]][[entity-bean-container-managed-persistence-test-setup-for-jakarta-
enterprise-beans-v-1.1]]

5.4.13 Entity Bean Container-Managed Persistence Test Setup for Jakarta Enterprise
Beans V 1.1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^

Your Jakarta Platform, Enterprise Edition implementation should map the
following instance variables to a backend datastore. These are needed to
run the TCK entity bean container-managed persistence (cmp1.1) tests.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    83



The Jakarta Platform, Enterprise Edition CI creates the table used by
container-managed persistence by appending `"Table"` to the bean name.
For example, if your bean name is `TestEJB`, the table that will be
created will be `TestEJBTable`.

The container-managed fields for most `cmp` tests must have the
following names and the following Java types:

[width="50%",cols="50%,50%",options="header",]
|======================
|Column Name |Java Type
|`key_id` |Integer
|`brand_name` |String
|`price` |Float
|======================

These instance variable names correspond to the following database
schema:

[source,oac_no_warn]
----
KEY_ID (INTEGER NOT NULL)
BRAND_NAME (VARCHAR(32))
PRICE (FLOAT)
PRIMARY KEY (KEY_ID)
----

These instance variables are used in the transactional entity test bean
for the transactional test cases (`tx`) and in the database support
utility class for the bean behavior test cases (`bb`). These instance
variables, used in the enterprise bean tests, must be accessible at
deployment time.

The Jakarta Platform, Enterprise Edition CI, Eclipse GlassFish 6.1 provides the
container-managed
persistence implementation-specific features as part of its runtime XML
file. Your Jakarta Platform, Enterprise Edition platform implementation
needs to map the container-managed fields to the appropriate backend
datastore. The manner in which you do this is implementation-specific.
The `DeploymentInfo` class provides all of the runtime XML information
as an object that is passed to the `TSDeploymentInterface`
implementation.

For a list of SQL statements used in CMP 1.1 finders, refer to
link:ejbql-schema.html#GFKQT[SQL Statements for CMP 1.1 Finders].

Preface

84    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



[[GEXOL]][[jakarta-persistence-api-test-setup]]

5.4.14 Jakarta Persistence API Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Jakarta Persistence API tests exercise the requirements as defined in
the Jakarta Persistence API Specification. This specification defines a
persistence context to be a set of managed entity instances, in which
for any persistent identity there is a unique entity instance. Within
the persistence context, the entity instances and their life cycles are
managed by the entity manager.

Within a Jakarta Platform, Enterprise Edition environment, support for both
container-managed and application-managed entity managers is required.
Application-managed entity managers can be Jakarta Transactions or resource-local.
Refer
to Chapter 7 of the Jakarta Persistence API Specification
(`https://jakarta.ee/specifications/persistence/3.0`) for additional information
regarding entity managers.

[[GJKPA]][[to-configure-the-test-environment-to-run-the-jakarta-persistence-
pluggability-tests]]

5.4.14.1 To Configure the Test Environment to Run the Jakarta Persistence
Pluggability Tests
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++

The Jakarta Persistence Pluggability tests under the
`src/com/sun/ts/tests/jpa/ee/pluggability` directory ensure that a
third-party persistence provider is pluggable, in nature.

After Java EE 7 TCK, the pluggability tests were rewritten to use a
stubbed-out legacy JPA 2.1 implementation, which is located in the
`src/com/sun/ts/jpa/common/pluggibility/altprovider` directory.

In Java EE 7 TCK, the Persistence API pluggability tests required
special setup to run. This is no longer the case, since Jakarta EE 10 Platform TCK
now enables the pluggability tests to be executed automatically along
with all the other Persistence tests. The Jakarta Persistence tests have a new
directory structure. In Java EE 7 TCK, the tests were in the
`src/com/sun/ts/tests/ejb30/persistence` directory. The Jakarta EE 10 tests are now
in
the `src/com/sun/ts/tests/jpa` directory.

[[sthref19]][[enabling-second-level-caching-support]]

5.4.14.2 Enabling Second Level Caching Support

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    85



++++++++++++++++++++++++++++++++++++++++++++++

Jakarta Persistence supports the use of a second-level cache by the
persistence provider. The `ts.jte` file provides a property that
controls the TCK test suite's use of the second-level cache.

The `persistence.second.level.caching.supported` property is used to
determine if the persistence provider supports the use of a second-level
cache. The default value is true. If your persistence provider does not
support second level caching, set the value to false.

[[GEXOW]][[persistence-test-vehicles]]

5.4.14.3 Persistence Test Vehicles
++++++++++++++++++++++++++++++++++

The persistence tests are run in a variety of "vehicles" from which the
entity manager is obtained and the transaction type is defined for use.
There are six vehicles used for these tests:

* `stateless3`: Bean-managed stateless session bean using JNDI to lookup
a Jakarta Transactions `EntityManager`; uses `UserTransaction` methods for
transaction
demarcation

* `stateful3`: Container-managed stateful session bean using
`@PersistenceContext` annotation to inject Jakarta Transactions `EntityManager;` uses
container-managed transaction demarcation with a transaction attribute
(required)

* `appmanaged`: Container-managed stateful session bean using
`@PersistenceUnit` annotation to inject an `EntityManagerFactory`; the
`EntityManagerFactory` API is used to create an Application-Managed Jakarta
Transactions
`EntityManager`, and uses the container to demarcate transactions

* `appmanagedNoTx`: Container-managed stateful session bean using
`@PersistenceUnit` annotation to inject an `EntityManagerFactory`; the
`EntityManagerFactory` API is used to create an Application-Managed
Resource Local `EntityManager`, and uses the `EntityTransaction` APIs to
control transactions

* `pmservlet`: Servlet that uses the `@PersistenceContext` annotation at
the class level and then uses JNDI lookup to obtain the `EntityManager`;
alternative to declaring the persistence context dependency via a
`persistence-context-ref` in `web.xml` and uses `UserTransaction`
methods for transaction demarcation

Preface

86    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



* `puservlet`: Servlet that injects an `EntityManagerFactory` using the
`@PersistenceUnit` annotation to create a to Resource Local
`EntityManager`, and uses `EntityTransaction` APIs for transaction
demarcation

[NOTE]
=======================================================================

For vehicles using a `RESOURCE_LOCAL` transaction type, be sure to
configure a non-transactional resource with the logical name
`jdbc/DB_no_tx`. Refer to the `ts.jte` file for information about the
`jdbc.db` property.

=======================================================================

[[GEXPY]][[generatedvalue-annotation]]

5.4.14.4 GeneratedValue Annotation
++++++++++++++++++++++++++++++++++

The Jakarta Persistence API Specification also defines the requirements for
the `GeneratedValue` annotation. The default for this annotation is
`GenerationType.AUTO`. Per the specification, `AUTO` indicates that the
persistence provider should pick an appropriate strategy for the
particular database. The `AUTO` generation strategy may expect a
database resource to exist, or it may attempt to create one.

The `db.supports.sequence` property is used to determine if a database
supports the use of SEQUENCE. If it does not, this property should be
set to false so the test is not run. The default value is true.

If the database under test is not one of the databases defined and
supported by TCK, the user will need to create an entry similar to the
one listed in link:#GEXOO[Example 5-1].

[[GEXOO]]

===== Example 5-1 GeneratedValue Annotation Test Table

[source,oac_no_warn]
----
DROP TABLE SEQUENCE;
CREATE TABLE SEQUENCE (SEQ_NAME VARCHAR(10), SEQ_COUNT INT, CONSTRAINT SEQUENCE_PK /
PRIMARY KEY (SEQ_NAME) );
INSERT into SEQUENCE(SEQ_NAME, SEQ_COUNT) values ('SEQ_GEN', 0) ;
----

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    87



You should add your own table to your chosen database DDL file provided
prior to running these tests. The Data Model used to test the Jakarta
Persistence Query Language can be found in
link:ejbql-schema.html#GFAVUc[Appendix D, "EJBQL Schema."]

The `persistence.xml` file, which defines a persistence unit, contains
the `unitName` `CTS-EM` for Jakarta Transactions entity managers. This corresponds to
`jta-data-source`, `jdbc/DB1`, and to `CTS-EM-NOTX` for `RESOURCE_LOCAL`
entity managers, which correspond to a `non-jta-data-source`
`jdbc/DB_no_tx`.

[[GEXPT]][[jakarta-messaging-test-setup]]

5.4.15 Jakarta Messaging Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This section explains how to set up and configure the Jakarta EE 10 Platform TCK test
suite before running the Jakarta Messaging tests.

[NOTE]
=======================================================================

The client-specified values for `JMSDeliveryMode`, `JMSExpiration`, and
`JMSPriority` must not be overridden when running the TCK Jakarta Messaging tests.

=======================================================================

[[sthref20]][[to-configure-a-slow-running-system]]

5.4.15.1 To Configure a Slow Running System
+++++++++++++++++++++++++++++++++++++++++++

Make sure that the following property has been set in the `ts.jte` file:

[source,oac_no_warn]
----
jms_timeout=10000
----

This property specifies the length of time, in milliseconds, that a
synchronous receive operation will wait for a message. The default value
of the property should be sufficient for most environments. If, however,
your system is running slowly and you are not receiving the messages
that you should be, you need to increase the value of this parameter.

Preface

88    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



[[sthref21]][[to-test-your-jakarta-messaging-resource-adapter]]

5.4.15.2 To Test Your Jakarta Messaging Resource Adapter
++++++++++++++++++++++++++++++++++++++++++++++++++++++++

If your implementation supports Jakarta Messaging as a Resource Adapter, you must set
the name of the `jmsra.name` property in the `ts.jte` file to the name
of your Jakarta Messaging Resource Adapter. The default value for the property is the
name of the Jakarta Messaging Resource Adapter in the Jakarta EE 10 CI.

If you modify the `jmsra.name` property, you must rebuild the Jakarta Messaging tests
that use this property. You rebuild the tests by doing the following:

.  Change to the `TS_HOME/bin` directory.

.  Invoke the following Ant task:
+
[source,oac_no_warn]
----
ant rebuild.jms.rebuildable.tests
----
This rebuilds the tests under
`TS_HOME/src/com/sun/ts/tests/jms/ee20/resourcedefs`.

[[sthref22]][[to-create-jakarta-messaging-administered-objects]]

5.4.15.3 To Create Jakarta Messaging Administered Objects
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

If you do not have an API to create Jakarta Messaging Administered objects, and you
cannot create an Ant target equivalent to `config.vi`, you can use the
list that follows and manually create the objects. If you decide to
create these objects manually, you need to provide a dummy
implementation of the Jakarta Messaging porting interface, `TSJMSAdminInterface`.

The list of objects you need to manually create includes the following
factories, queues, and topics.

* Factories:
+
[source,oac_no_warn]
----
jms/TopicConnectionFactory
jms/DURABLE_SUB_CONNECTION_FACTORY, clientId=cts
jms/MDBTACCESSTEST_FACTORY, clientId=cts1
jms/DURABLE_BMT_CONNECTION_FACTORY, clientId=cts2
jms/DURABLE_CMT_CONNECTION_FACTORY, clientId=cts3
jms/DURABLE_BMT_XCONNECTION_FACTORY, clientId=cts4
jms/DURABLE_CMT_XCONNECTION_FACTORY, clientId=cts5

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    89



jms/DURABLE_CMT_TXNS_XCONNECTION_FACTORY, clientId=cts6
jms/QueueConnectionFactory
jms/ConnectionFactory
----
+
* Queues:
+
[source,oac_no_warn]
----
MDB_QUEUE
MDB_QUEUE_REPLY
MY_QUEUE
MY_QUEUE2
Q2
QUEUE_BMT
ejb_ee_bb_localaccess_mdbqaccesstest_MDB_QUEUE
ejb_ee_deploy_mdb_ejblink_casesensT_ReplyQueue
ejb_ee_deploy_mdb_ejblink_casesens_ReplyQueue
ejb_ee_deploy_mdb_ejblink_casesens_TestBean
ejb_ee_deploy_mdb_ejblink_scopeT_ReplyQueue
ejb_ee_deploy_mdb_ejblink_scope_ReplyQueue
ejb_ee_deploy_mdb_ejblink_scope_TestBean
ejb_ee_deploy_mdb_ejblink_singleT_ReplyQueue
ejb_ee_deploy_mdb_ejblink_single_ReplyQueue
ejb_ee_deploy_mdb_ejblink_single_TestBean
ejb_ee_deploy_mdb_ejblink_single_TestBeanBMT
ejb_ee_deploy_mdb_ejbref_casesensT_ReplyQueue
ejb_ee_deploy_mdb_ejbref_casesens_ReplyQueue
ejb_ee_deploy_mdb_ejbref_casesens_TestBean
ejb_ee_deploy_mdb_ejbref_scopeT_ReplyQueue
ejb_ee_deploy_mdb_ejbref_scope_Cyrano
ejb_ee_deploy_mdb_ejbref_scope_ReplyQueue
ejb_ee_deploy_mdb_ejbref_scope_Romeo
ejb_ee_deploy_mdb_ejbref_scope_Tristan
ejb_ee_deploy_mdb_ejbref_singleT_ReplyQueue
ejb_ee_deploy_mdb_ejbref_single_ReplyQueue
ejb_ee_deploy_mdb_ejbref_single_TestBean
ejb_ee_deploy_mdb_ejbref_single_TestBeanBMT
ejb_ee_deploy_mdb_enventry_casesensT_ReplyQueue
ejb_ee_deploy_mdb_enventry_casesens_CaseBean
ejb_ee_deploy_mdb_enventry_casesens_CaseBeanBMT
ejb_ee_deploy_mdb_enventry_casesens_ReplyQueue
ejb_ee_deploy_mdb_enventry_scopeT_ReplyQueue
ejb_ee_deploy_mdb_enventry_scope_Bean1_MultiJar
ejb_ee_deploy_mdb_enventry_scope_Bean1_SameJar
ejb_ee_deploy_mdb_enventry_scope_Bean2_MultiJar
ejb_ee_deploy_mdb_enventry_scope_Bean2_SameJar
ejb_ee_deploy_mdb_enventry_scope_ReplyQueue

Preface

90    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



ejb_ee_deploy_mdb_enventry_singleT_ReplyQueue
ejb_ee_deploy_mdb_enventry_single_AllBean
ejb_ee_deploy_mdb_enventry_single_AllBeanBMT
ejb_ee_deploy_mdb_enventry_single_BooleanBean
ejb_ee_deploy_mdb_enventry_single_ByteBean
ejb_ee_deploy_mdb_enventry_single_DoubleBean
ejb_ee_deploy_mdb_enventry_single_FloatBean
ejb_ee_deploy_mdb_enventry_single_IntegerBean
ejb_ee_deploy_mdb_enventry_single_LongBean
ejb_ee_deploy_mdb_enventry_single_ReplyQueue
ejb_ee_deploy_mdb_enventry_single_ShortBean
ejb_ee_deploy_mdb_enventry_single_StringBean
ejb_ee_deploy_mdb_resref_singleT_ReplyQueue
ejb_ee_deploy_mdb_resref_single_ReplyQueue
ejb_ee_deploy_mdb_resref_single_TestBean
ejb_ee_sec_stateful_mdb_MDB_QUEUE
ejb_sec_mdb_MDB_QUEUE_BMT
ejb_sec_mdb_MDB_QUEUE_CMT
jms_ee_mdb_mdb_exceptQ_MDB_QUEUETXNS_CMT
jms_ee_mdb_mdb_exceptQ_MDB_QUEUE_BMT
jms_ee_mdb_mdb_exceptQ_MDB_QUEUE_CMT
jms_ee_mdb_mdb_exceptT_MDB_QUEUETXNS_CMT
jms_ee_mdb_mdb_exceptT_MDB_QUEUE_BMT
jms_ee_mdb_mdb_exceptT_MDB_QUEUE_CMT
jms_ee_mdb_mdb_msgHdrQ_MDB_QUEUE
jms_ee_mdb_mdb_msgPropsQ_MDB_QUEUE
jms_ee_mdb_mdb_msgTypesQ1_MDB_QUEUE
jms_ee_mdb_mdb_msgTypesQ2_MDB_QUEUE
jms_ee_mdb_mdb_msgTypesQ3_MDB_QUEUE
jms_ee_mdb_mdb_rec_MDB_QUEUE
jms_ee_mdb_sndQ_MDB_QUEUE
jms_ee_mdb_sndToQueue_MDB_QUEUE
jms_ee_mdb_mdb_synchrec_MDB_QUEUE
jms_ee_mdb_xa_MDB_QUEUE_BMT
jms_ee_mdb_xa_MDB_QUEUE_CMT
testQ0
testQ1
testQ2
testQueue2
fooQ
----
+
* Topics:
+
[source,oac_no_warn]
----
MY_TOPIC
MY_TOPIC2

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    91



TOPIC_BMT
ejb_ee_bb_localaccess_mdbtaccesstest_MDB_TOPIC
ejb_ee_deploy_mdb_ejblink_casesensT_TestBean
ejb_ee_deploy_mdb_ejblink_scopeT_TestBean
ejb_ee_deploy_mdb_ejblink_singleT_TestBean
ejb_ee_deploy_mdb_ejblink_singleT_TestBeanBMT
ejb_ee_deploy_mdb_ejbref_casesensT_TestBean
ejb_ee_deploy_mdb_ejbref_scopeT_Cyrano
ejb_ee_deploy_mdb_ejbref_scopeT_Romeo
ejb_ee_deploy_mdb_ejbref_scopeT_Tristan
ejb_ee_deploy_mdb_ejbref_singleT_TestBean
ejb_ee_deploy_mdb_ejbref_singleT_TestBeanBMT
ejb_ee_deploy_mdb_enventry_casesensT_CaseBean
ejb_ee_deploy_mdb_enventry_casesensT_CaseBeanBMT
ejb_ee_deploy_mdb_enventry_scopeT_Bean1_MultiJar
ejb_ee_deploy_mdb_enventry_scopeT_Bean1_SameJar
ejb_ee_deploy_mdb_enventry_scopeT_Bean2_MultiJar
ejb_ee_deploy_mdb_enventry_scopeT_Bean2_SameJar
ejb_ee_deploy_mdb_enventry_singleT_AllBean
ejb_ee_deploy_mdb_enventry_singleT_AllBeanBMT
ejb_ee_deploy_mdb_enventry_singleT_BooleanBean
ejb_ee_deploy_mdb_enventry_singleT_ByteBean
ejb_ee_deploy_mdb_enventry_singleT_DoubleBean
ejb_ee_deploy_mdb_enventry_singleT_FloatBean
ejb_ee_deploy_mdb_enventry_singleT_IntegerBean
ejb_ee_deploy_mdb_enventry_singleT_LongBean
ejb_ee_deploy_mdb_enventry_singleT_ShortBean
ejb_ee_deploy_mdb_enventry_singleT_StringBean
ejb_ee_deploy_mdb_resref_singleT_TestBean
jms_ee_mdb_mdb_exceptT_MDB_DURABLETXNS_CMT
jms_ee_mdb_mdb_exceptT_MDB_DURABLE_BMT
jms_ee_mdb_mdb_exceptT_MDB_DURABLE_CMT
jms_ee_mdb_mdb_msgHdrT_MDB_TOPIC
jms_ee_mdb_mdb_msgPropsT_MDB_TOPIC
jms_ee_mdb_mdb_msgTypesT1_MDB_TOPIC
jms_ee_mdb_mdb_msgTypesT2_MDB_TOPIC
jms_ee_mdb_mdb_msgTypesT3_MDB_TOPIC
jms_ee_mdb_mdb_rec_MDB_TOPIC
jms_ee_mdb_mdb_sndToTopic_MDB_TOPIC
jms_ee_mdb_mdb_sndToTopic_MDB_TOPIC_REPLY
jms_ee_mdb_xa_MDB_DURABLE_BMT
jms_ee_mdb_xa_MDB_DURABLE_CMT
testT0
testT1
testT2
----
+
[NOTE]

Preface

92    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



=======================================================================

Implementations of `TSJMSAdminInterface` are called inside the JavaTest
VM. The `com.sun.ts.lib.deliverable.cts.CTSPropertyManager` class, which
is available to these implementations, provides access to any property
in the `ts.jte` file.

=======================================================================

[[GKWVB]][[jakarta-authentication-service-test-setup]]

5.4.16 Jakarta Authentication Service Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Jakarta Authentication Service for Containers (Authentication)
1.1 tests are security tests. The Jakarta Authentication Servlet (jaspicservlet)
profile is the only
required profile for Jakarta EE 10 Platform TCK. There are other optional profile
tests, such as SOAP, but you are not required to run these for
certification.

The test suite includes the following Ant targets that configure the
test environment for the Jakarta Authentication tests

* `config_vi` target in `<TS_HOME>/bin/build.xml`
* `enable.jaspic`, also in `<TS_HOME>/bin/build.xml`

Both targets call `<TS_HOME>/bin/xml/impl/glassfish/javaee_vi.xml`,
which then makes calls into `<TS_HOME>/bin/xml/impl/glassfish/s1as.xml`.
You may want to examine these targets to see what is done in greater
detail.

Complete the following steps before you run the Jakarta Authentication tests:

.  Configure the Jakarta Authentication-required properties in the `ts.jte` file:

..  Set the `provider.configuration.file` property to the location of
your implementation's instance `lib` directory, where it can be loaded
when your implementation runtime is started. +
This file typically coexists with the `tssv.jar` file and the
`provider-configuration.dtd` file.

..  Set the `vendor.authconfig.factory` property to specify your
`AuthConfigFactory` class. +
This property setting will be used by the Jakarta Authentication tests to register
the
test suite's provider in your `AuthConfigFactory`.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    93



..  Set the `logical.hostname.servlet` property to the logical host that
will process Servlet requests. +
Servlet requests may be directed to a logical host using various
physical or virtual host names or addresses. A message processing
runtime may be composed of multiple logical hosts. This setting is
required to properly identify the Servlet profile's application context
identifier hostname. If the logical host that will process Servlet
requests does not exist, you can set this to the default hostname of
your implementation's Web server.

..  Set the `servlet.is.jsr115.compatible` property based on whether or
not you are running the Servlet profile in a Jakarta Authorization 1.5 compatible
container.
.  Ensure that the `config.vi` Ant task has been run before running the
`enable.jaspic` Ant task. +
These Ant tasks perform the following Jakarta Authentication-required steps:

* Set up users and passwords for your implementation. +
See Step link:#BABDADHA[9]link:#BABBHFAI[b] in link:#GEWWA[Configuring
Your Application Server as the VI] for more information.

* Install the client-side certificate in the `trustStore` in your
implementation. +
See Step link:#BABEGCJH[17] in link:#GEWWA[Configuring Your Application
Server as the VI] for more information.

* Append the file `<TS_HOME>/bin/server_policy.append` to the Java
policy file or files on your implementation. +
See Step 17 in link:#GEWWA[Configuring Your Application Server as the
VI]link:#GEWWA[Configuring Your Application Server as the VI] for more
information.

* Appends the file `<TS_HOME>/bin/client_policy.append` to the
application client's Java policy file, which is referenced in the
`TestExecuteAppClient` section of the `ts.jte` file. +
See Step 18 in link:#GEWWA[Configuring Your Application Server as the
VI]link:#GEWWA[Configuring Your Application Server as the VI] for more
information.

* Copies the `<TS_HOME>/lib/tssv.jar` file to your implementation
instance library directory. +
The `tssv.jar` file includes the class files necessary to load
`TSAuthConfigFactory` and related classes.

* Copies the TSSV configuration files (`ProviderConfiguration.xml`,
`configuration.dtd`) to your implementation instance library directory. +
The `provider-configuration.dtd` file is a DTD file that resides in the

Preface

94    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



same directory as the `ProviderConfiguration.xml` file and describes the
`ProviderConfiguration.xml` file. This file should not be edited.

* Copies `<TS_HOME>/bin/ts.java.security` to
`<JAVAEE_HOME>/domains/domain1/config/ts.java.security`, where
`<JAVAEE_HOME>` is the location of your Jakarta EE 10 CI installation.

* Sets the following JVM options:

** `-Djava.security.properties=<JAVAEE_HOME>/domains/domain1/config/ts.java.security`

** `-Dlog.file.location=${log.file.location}`

** `-Dprovider.configuration.file=${provider.configuration.file}`
.  Deploy the Jakarta Authentication log file processor,
`<TS_HOME>/dist/com/sun/ts/tests/jaspic/util/jaspic_util_web.war`, to
the implementation under test.
+
[NOTE]
=======================================================================

It may be necessary to restart your implementation after completing this
step.

=======================================================================
+
.  Run the tests for the profiles with which you are trying to certify.
.  After running the Jakarta Authentication tests, change back to the `<TS_HOME>/bin`
directory and execute the following command:
+
[source,oac_no_warn]
----
cd <TS_HOME>/bin
ant disable.jaspic
----
+
This Ant task undoes the changes that were made to your implementation
by the `enable.jaspic` target. If these changes are not reversed, your
implementation may be left in an uncertain state.

[[GEYBI]][[jakarta-authorization-test-setup]]

5.4.17 Jakarta Authorization Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To comply with Jakarta EE 10 requirements, Jakarta Authorization must be supported in
both
the Web and Jakarta Enterprise Beans environments.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    95



The tests for each environment are divided into two directories:

* `src/com/sun/ts/tests/jacc/web`
* `src/com/sun/ts/tests/jacc/ejb`

When deploying the archives that contain Jakarta Authorization tests, don't deploy
all
the Jakarta Authorization test archives at the same time. While this may work, there
have
been times when it has caused problems. The recommended course of action
is to deploy the test archive for the directory under test. Once done,
remove that archive and move onto another directory.

The Jakarta Authorization-TCK provider acts as a delegating security provider sitting
between the appserver and vendor provider. The Jakarta Platform, Enterprise
Edition appserver comes with a default security provider that is defined
by two system properties; for the purposes of this discussion, these are
referred to as `A=DefaultProviderFactory` and `B=DefaultPolicyModule`.

TCK moves the values from A and B to two new variables:
`C=DefaultProviderFactory` and `D=DefaultPolicyModule`, replacing the
TCK provider classes to the variables `A` and `B` (`A=TSProviderFactory`
and `B=TSPolicyModule`). This modification allows the server to call the
TCK provider for all its functions, and the TCK provider in turn uses
these new variables to invoke the real provider.

The property names `A`, `B`, `C`, and `D` are used for convenience here.
The real property names are as follows:

* `A=jakarta.security.jacc.PolicyConfigurationFactory.provider`
* `B=jakarta.security.jacc.policy.provider`
* `C=vendor.jakarta.security.jacc.PolicyConfigurationFactory.provider`
* `D=vendor.jakarta.security.jacc.policy.provider`

To configure the Jakarta Authorization provider for the Jakarta Platform, Enterprise
Edition
CI, execute the Jakarta Authorization Ant target from:

[source,oac_no_warn]
----
<TS_HOME>/bin
----

This command does the following:

* Switches the system properties.
* Adds `tsprovider.jar` to Jakarta Platform, Enterprise Edition application
server's classpath.

Preface

96    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



* Adds `log.file.location` system property to the Jakarta Platform,
Enterprise Edition application server's system properties. This is used
for generating log files, which is used for verifying Jakarta Authorization 1.5
contracts.

[NOTE]
=======================================================================

When running Jakarta Authorization tests against the Jakarta EE 10 CI, if you need to
restart
the CI, be sure to first remove all Jakarta Authorization log files (`jacc_log.*`)
from
the `JAVAEE_HOME/domains/domain1/logs` directory before running the Jakarta
Authorization
tests again.

=======================================================================

[[GEYAM]][[wsdl-webservice-test-and-runtime-notes]]

5.4.18 WSDL: Webservice Test and Runtime Notes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In addition to the WSDL elements described later in this section, the
Jakarta Platform, Enterprise Edition CI webservice runtime DTDs contain two
new optional elements for publishing and lookup of final WSDLs for a
deployed webservice endpoint. These new tags are
`<wsdl-publish-location>` and `<wsdl-override>`, and are used by the CTS
to automate all TCK webservices tests, regardless of the host or port
used to run the tests.

These WSDL tags are also used when performing file URL publishing, as
required by Jakarta Implementing Web Services 1.4. Jakarta Implementing
Web Services 1.4 states that http URL and file URL publishing
must be supported on a Jakarta Platform, Enterprise Edition platform. In
addition, the `<wsdl-override>` is used as a mechanism for satisfying
the partial WSDL requirement in the Jakarta Implementing Web Services
1.4 specification. This mechanism
enables the specification of the location of the final full published
WSDL of a deployed webservice endpoint within the client EAR when only a
partial WSDL is packaged, which enables client access to the full WSDL
and correct SOAP address to communicate with the webservice.

The `<wsdl-publish-location>` tag tells the Jakarta Platform, Enterprise
Edition CI where to publish the final WSDL for the deployed webservice
endpoint. As stated above, the final WSDL can be published to a file URL

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    97



or http URL, although the tag is really only necessary for file URL
publishing, and is ignored if http URL publishing is specified (http is
the default publishing used by the Jakarta Platform, Enterprise Edition
CI). This tag is included in all TCK tests for consistency and to aid as
a mechanism in automation.

By default, the Jakarta Platform, Enterprise Edition CI publishes the final
WSDL during deployment to a http URL following a standard URL naming
scheme. See below for details about the Jakarta Platform, Enterprise
Edition CI runtime. This default can be overriden to explicitly do file
URL publishing.

The `<wsdl-override>` tag tells the client application EAR where to
lookup the final published WSDL for the deployed webservice endpoint.
This will be either a `file` URL or an `http` URL to match what is
specified in the `<wsdl-publish-location>` tag.

[[GEYAJ]][[wsdl-ts.jte-properties]]

5.4.18.1 WSDL ts.jte Properties
+++++++++++++++++++++++++++++++

For file URL publishing, the TCK defines two properties in the `ts.jte`
file, named `wsdlRepository1` and `wsdlRepository2`, which specify the
file system directory location to use for publishing final WSDLs that
use file URL publishing.

The `wsdlRepository1` is used for the Vendor Jakarta Platform, Enterprise
Edition Implementation. The `wsdlRepository2` is used for the CI Jakarta
Platform, Enterprise Edition Implementation, and is only used for CTS
webservices interoperability testing. These directories get created by
the TCK harness at runtime. The default settings in the `ts.jte` file
will create these directories under:

[source,oac_no_warn]
----
wsdlRepository1=<TS_HOME>/tmp/wsdlRepository1
wsdlRepository2=<TS_HOME>/tmp/wsdlRepository2
----

For file URL publishing, the WSDL tag settings could be as follows:

[source,oac_no_warn]
----
$TS_HOME/src/com/sun/ts/tests/webservices/wsdlImport/file/Simple1
Webservice Endpoint
<wsdl-publish-location>
file:wsdlRepository1/Simple1File

Preface

98    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



</wsdl-publish-location>

Webservice Client Application
<wsdl-override>
file:wsdlRepository1/Simple1File/Simple1FileSvc.wsdl
</wsdl-override>
----

In this case, the TCK harness substitutes `wsdlRepository1` with the
setting in the `<TS_HOME>/bin/ts.jte` file.

For `http` URL publishing, the tag settings might be:

[source,oac_no_warn]
----
$TS_HOME/src/com/sun/ts/tests/webservices/wsdlImport/http/Simple1
Webservice Endpoint
<wsdl-publish-location>
http://webServerHost.1:webServerPort.1/Simple1Http/ws4ee?WSDL
</wsdl-publish-location>

Webservice Client Application
<wsdl-override>
http://webServerHost.1:webServerPort.1/Simple1Http/ws4ee?WSDL
</wsdl-override>
----

In this case, the TCK harness substitutes the
webServerHost.1:webServerPort.1 with the settings in the
`<TS_HOME>/bin/ts.jte` file.

[NOTE]
=======================================================================

In the case of interop webservices tests, the TCK harness substitutes
the `webServerHost.2:webServerPort.2` with the settings in the `ts.jte`
file. This host and port defines the CI Jakarta Platform, Enterprise
Edition implementation used as the interop test machine. See
`tests/interop/webservices` for these tests.

=======================================================================

[[GEYCO]][[webservice-endpoint-wsdl-elements]]

5.4.18.2 Webservice Endpoint WSDL Elements
++++++++++++++++++++++++++++++++++++++++++

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    99



The following are the webservice endpoint WSDL elements:

[[GEYMW]][[setting-endpoint-address]]

5.4.18.2.1 Setting Endpoint Address

[source,oac_no_warn]
----
element : endpoint-address-uri
----

The endpoint address URI is used to compose the endpoint address URL
through which the endpoint can be accessed. It is required for Jakarta Enterprise
Beans
endpoints and optional for servlet endpoints.

The `endpoint-address-uri` can have an optional leading forward slash
(`/`). It must be a fixed pattern (no asterisk (`*`) wildcards).

* Jakarta Enterprise Beans Example: +
For Jakarta Enterprise Beans endpoints, the URI is relative to root of the web
server; for
example, if the web server is listening at `http://localhost:8000`, an
endpoint address URI of `google/GoogleSearch` would result in an
endpoint address of: +
[source,oac_no_warn]
----
http://localhost:8000/google/GoogleSearch
----
Note that the first portion of the URI (`google`) should not conflict
with the context root of any deployed web application. +
[source,oac_no_warn]
----
<enterprise-beans>
    <module-name>ejb.jar</module-name>
    <ejb>
      <ejb-name>GoogleEjb</ejb-name>
      <webservice-endpoint>
        <port-component-name>GoogleSearchPort</port-component-name>
        <endpoint-address-uri>google/GoogleSearch</endpoint-address-uri>
      </webservice-endpoint>
    </ejb>
</enterprise-beans>
----
* Servlet Example: +
For servlet endpoints, the `endpoint-address-uri` is only needed if the
servlet does not have a servlet-mapping `url-pattern` in its `web.xml`.

Preface

100    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



Its value is relative to the context root of the servlet's web
application. +
[source,oac_no_warn]
----
<web>
    <module-name>web.war</module-name>
    <context-root>GoogleServletContext</context-root>
    <servlet>
        <servlet-name>MyGoogleServlet</servlet-name>
        <webservice-endpoint>
           <port-component-name>GoogleSearchPort</port-component-name>
           <endpoint-address-uri>/GoogleSearch</endpoint-address-uri>
         </webservice-endpoint>
    </servlet>
</web>
----
In this case, the target endpoint address would be: +
[source,oac_no_warn]
----
http://localhost:8000/GoogleServletContext/GoogleSearch
----

[[GEYLR]][[jakarta-enterprise-beans-endpoint-security]]

5.4.18.2.2 Jakarta Enterprise Beans Endpoint Security

[source,oac_no_warn]
----
element : login-config
----

This only applies to Jakarta Enterprise Beans endpoints and is optional. It is used
to
specify how authentication is performed for Jakarta Enterprise Beans endpoint
invocations. It
consists of a single subelement named `auth-method`. `auth-method` is
set to `BASIC` or `CLIENT_CERT`. The equivalent security for servlet
endpoints is set through the standard web-application security elements.
For example:

[source,oac_no_warn]
----
<ejb>
      <ejb-name>GoogleEjb</ejb-name>
      <webservice-endpoint>
        <port-component-name>GoogleSearchPort</port-component-name>
        <endpoint-address-uri>google/GoogleSearch</endpoint-address-uri>

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    101



        <login-config>
           <auth-method>BASIC</auth-method>
        </login-config>
      </webservice-endpoint>
</ejb>
----

[[GEYNB]][[transport-guarantee]]

5.4.18.2.3 Transport Guarantee

[source,oac_no_warn]
----
element : transport-guarantee
----

This is an optional setting on `webservice-endpoint`. The allowable
values are `NONE`, `INTEGRAL`, and `CONFIDENTIAL`. If not specified, the
behavior is equivalent to `NONE`. The meaning of each option is the same
as is defined in the Security chapter of the Jakarta Servlet 6.0 Specification.
This setting will determine the
scheme and port used to generate the final endpoint address for a web
service endpoint. For `NONE`, the scheme will be `HTTP` and port will be
the default HTTP port. For `INTEGRAL/CONFIDENTIAL`, the scheme will be
`HTTPS` and the port will be the default HTTPS port.

[[GEYMY]][[publishing-final-wsdl-during-deployment]]

5.4.18.2.4 Publishing Final WSDL During Deployment

* URL publishing: no extra information required. +
The final WSDL document for each webservice endpoint is always published
to a URL having the following syntax:

** Jakarta Enterprise Beans endpoints:
+
[source,oac_no_warn]
----
<scheme>://<hostname>:<port>/<endpoint_address_uri>?WSDL
----
+
** Servlet endpoints:
+
[source,oac_no_warn]
----
<scheme>://<hostname>:<port>/<context-root><url-pattern>?WSDL
----
+

Preface

102    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



or
+
[source,oac_no_warn]
----
<scheme>://<hostname>:<port>/<context-root><endpoint_address_uri>?WSDL
----
+
Note that the final WSDL document returned from this URL will contain
port entries for all ports within the same service.
* File publishing:
+
[source,oac_no_warn]
----
element : wsdl-publish-location
----
+
To have a copy of the final WSDL written to a file, set this element to
a file URL; for example:
+
[source,oac_no_warn]
----
<enterprise-beans>
    <module-name>ejb.jar</module-name>
    <webservice-description>
        <webservice-description-name>GoogleSearchService
        </webservice-description-name>
        <wsdl-publish-location>file:/home/user1/GoogleSearch_final.wsdl
        </wsdl-publish-location>
    </webservice-description>
</enterprise-beans>
----

[[GEYLF]][[webservice-client-wsdl-elements]]

5.4.18.3 Webservice Client WSDL Elements
++++++++++++++++++++++++++++++++++++++++

In the TCK for file publishing, the directory in which to publish the
file WSDL is specified in the `<wsdl-publish-location>` tag for the
webservice, and the full path of the WSDL file is specified in the
`<wsdl-override>` tag in the client; for example:

[source,oac_no_warn]
----
<wsdl-publish-location>file:/files/wsdls/FileNested1</wsdl-publish-location>
<wsdl-override>file:/files/wsdls/FileNested1/nestedimportwsdl.wsdl</wsdl-override>
----

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    103



The Jakarta Platform, Enterprise Edition implementation defines the
behavior this way because, for `wsdl-publish-location`, the App Server
is potentially publishing many documents, not just one. This is because
the main WSDL could have dependencies on relative imports. There is no
requirement that the initial WSDL be located at the top of the
hierarchy, even though that is commonly the case.

For example, in an ejb-jar with a Main.wsdl that imports a relative WSDL
at `../../Relative.wsdl`, the packaging would look like:

[source,oac_no_warn]
----
META-INF/wsdl/a/b/Main.wsdl
META-INF/wsdl/Relative.wsdl
----

The `wsdl-publish-location` tells the TCK where to locate the topmost
part of the WSDL content hierarchy. So, given a `wsdl-publish-location`
of `/home/foo/wsdlpublishdir`, this location would look like:

[source,oac_no_warn]
----
/home/foo/wsdlpublishdir/Relative.wsdl
/home/foo/wsdlpublishdir/a/b/Main.wsdl
----

The `wsdl-override` property still always points to a specific WSDL
document, which in this case would be
`/home/foo/wsdlpublishdir/a/b/Main.wsdl`.

[[GEYLV]][[resolving-container-managed-ports]]

5.4.18.3.1 Resolving Container-Managed Ports

[source,oac_no_warn]
----
element : wsdl-port
----

Used to resolve the port to which a `service-ref` Service Endpoint
Interface is mapped. Only required for each `port-component-ref` in the
`service-ref` that does not have a `port-component-link`. For example:

[source,oac_no_warn]
----
<service-ref>
      <service-ref-name>service/GoogleSearchProxy</service-ref-name>
      <port-info>

Preface

104    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



        <service-endpoint-interface>googleclient.GoogleSearchPort
        </service-endpoint-interface>
        <wsdl-port>
           <namespaceURI>urn:GoogleSearch</namespaceURI>
           <localpart>GoogleSearchPort</localpart>
        </wsdl-port>
   </port-info>
</service-ref>
----

[[GEYOG]][[overriding-wsdl]]

===== 5.4.18.3.2 Overriding WSDL

[source,oac_no_warn]
----
element : wsdl-override
----

The `wsdl-override` element forces the deployment process to use a
different WSDL than the one associated with a `service-ref` in the
standard deployment module. This element is optional if the
`service-ref` WSDL is full WSDL, and is required if partial WSDL. In all
cases, it must point to a valid URL of a full WSDL document. Some
examples are shown below.

* To use the final WSDL generated upon deployment of the EJB endpoint
shown above:
+
[source,oac_no_warn]
----
<service-ref>
      <service-ref-name>service/GoogleSearch</service-ref-name>
      <wsdl-override>http://localhost:8000/google/GoogleSearch?WSDL
      </wsdl-override>
</service-ref>
----
+
* An alternate way to do the same thing by means of a file URL that
matches a webservice's `wsdl-publish-location` could be:
+
[source,oac_no_warn]
----
<service-ref>
      <service-ref-name>service/GoogleSearch</service-ref-name>
      <wsdl-override>file:/home/user1/GoogleSearch_final.wsdl
      </wsdl-override>
</service-ref>

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    105



----

[[CEGCHDEA]][[jakarta-security-api-test-setup]]

5.4.19 Jakarta Security API Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Complete the following steps before you run the Jakarta Security API tests:

.  Set the following properties in the ts.jte file:
+
[NOTE]
=======================================================================

An LDAP server is required in Jakarta Security API testing. You could either use
an already existing external LDAP server or use TCK script to install an
internal LDAP server.

=======================================================================
+
Choose one of these two options to make an LDAP server ready for
testing:

.  Use internal LDAP server - Unbounded (Recommended, and would be
installed by default.)
+
[NOTE]
=======================================================================

.  Ensure the ldap.server property is unbounded.

.  Ensure the path of ldap.ldif.file is correct.

.  Ensure the port 11389 is not occupied. Kill any related process
using port 11389.

=======================================================================
+
[NOTE]
=========================================

Parts of ts.jte:

* `ldap.server=unboundid`
* `ldap.install.server=true`
* `ldap.ldif.file=$\{ts.home}/bin/ldap.ldif`

=========================================
+
.  Use external LDAP server.

Preface

106    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



+
[NOTE]
=======================================================================

.  Ensure the port of LDAP server is 11389.

.  Update ldap.install.server property as false since TCK script need
not install LDAP server.
.  Import ldap.ldif file into Ldap server. You can get ldap.ldif from
`<TS_HOME>/install/jakartaee/bin/ldap.ldif`.

=======================================================================
+
[NOTE]
=========================================

Part of ts.jte - ldap.install.server=false

=========================================
+
.  Configure the VI environment using these commands to run the
Jakarta Security API test (including Derby, internal Ldap server which are
required by Jakarta Security 1.0):

..  cd <TS_HOME>/bin

..  ant config.vi

..  Start your database.

..  ant init.ldap
+
[NOTE]
=======================================================================

If you use the external LDAP server, do not run the command ant
init.ldap.

=======================================================================

[[GEYNX]][[signature-test-setup]]

5.4.20 Signature Test Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^

The signature test setup includes the following:

[[GEYPN]][[sigtestclasspath-property]]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    107



5.4.20.1 sigTestClasspath Property
++++++++++++++++++++++++++++++++++

Set the `sigTestClasspath` property in the `<TS_HOME>/bin/ts.jte` file
to include a `CLASSPATH` containing the following:

[source,oac_no_warn]
----
sigTestClasspath=jar_to_test:jars_used_by_yours
----

where:

* ``jar_to_test``: The JAR file you are validating when running the
signature tests; when running against the Jakarta Platform, Enterprise
Edition CI, Eclipse GlassFish 6.1, set to `javaee.jar`

* ``jars_used_by_yours``: The JAR file or files that are used or referenced
by your JAR file; must include any classes that might be extended or
implemented by the classes in your jar_to_test; include `rt.jar` when
running against the Jakarta Platform, Enterprise Edition CI

[[GEYOS]][[additional-signature-test-information]]

5.4.20.2 Additional Signature Test Information
++++++++++++++++++++++++++++++++++++++++++++++

The Jakarta EE 10 Platform TCK signature tests perform verifications in two different
modes: static and reflection. The test results list which SPEC API signature
tests pass or fail, and the mode (static or reflection) for that test.

Any signature test failure means one of two things, either you have not yet
corrected the `sigTestClasspath` or the respective SPEC API  jar in your Jakarta EE
implementation needs a modification to exactly match the Jakarta EE 10 Platform SPEC
API.
Your implementation SPEC API jars cannot contain additional public methods/fields,
nor can it be missing any expected public methods/fields.

As a troubleshooting aid when failures occur, consider the following:

* All static mode tests fail: +
Verify that the `sigTestClasspath` is using correct  SPEC API file names.
When running on Windows, be sure to use semicolons (`;`) for `CLASSPATH` separators.

* For all other signature test failures: +
Check the report output from the test to determine which tests failed
and why.

Preface

108    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



For example, some failures from an actual
`JavaEESigTest_signatureTest_from_servlet.jtr` failure:
`
SVR: ********** Status Report 'jakarta.servlet.jsp.jstl.core' **********

SVR: SignatureTest report
Base version: 2.0_se11
Tested version: 2.0_se11
Check mode: src [throws normalized]
Constant checking: on

Missing Fields :

jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_FALLBACK_LOCALE =
"jakarta.servlet.jsp.jstl.fmt.fallbackLocale"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_LOCALE =
"jakarta.servlet.jsp.jstl.fmt.locale"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_LOCALIZATION_CONTEXT =
"jakarta.servlet.jsp.jstl.fmt.localizationContext"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_TIME_ZONE =
"jakarta.servlet.jsp.jstl.fmt.timeZone"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.SQL_DATA_SOURCE =
"jakarta.servlet.jsp.jstl.sql.dataSource"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.SQL_MAX_ROWS =
"jakarta.servlet.jsp.jstl.sql.maxRows"

Added Fields :

jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_FALLBACK_LOCALE =
"javax.servlet.jsp.jstl.fmt.fallbackLocale"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_LOCALE = "javax.servlet.jsp.jstl.fmt.locale"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_LOCALIZATION_CONTEXT =
"javax.servlet.jsp.jstl.fmt.localizationContext"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.FMT_TIME_ZONE =
"javax.servlet.jsp.jstl.fmt.timeZone"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.SQL_DATA_SOURCE =

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    109



"javax.servlet.jsp.jstl.sql.dataSource"
jakarta.servlet.jsp.jstl.core.Config:   field public final static java.lang.String
jakarta.servlet.jsp.jstl.core.Config.SQL_MAX_ROWS =
"javax.servlet.jsp.jstl.sql.maxRows"

SVR: ********** Package 'jakarta.servlet.jsp.jstl.core' - FAILED (STATIC MODE)
**********
`

The failure above is a little strange, isn't it?  Why are there missing fields?  Why
are there added fields?
The failure means that the `jakarta.servlet.jsp.jstl.core.Config` class needs to be
updated to assign the correct values to the indicated constant fields.
Basically, instead of setting `Config.FMT_FALLBACK_LOCALE =
"javax.servlet.jsp.jstl.fmt.fallbackLocale"`,  you should set
`Config.FMT_FALLBACK_LOCALE = "jakarta.servlet.jsp.jstl.fmt.fallbackLocale"`
The same correction is needed for the other identified fields as well.

Another example only with methods is:

`
SVR: ********** Status Report 'jakarta.el' **********

SVR: SignatureTest report
Base version: 4.0_se11
Tested version: 4.0_se11
Check mode: src [throws normalized]
Constant checking: on

Missing Methods :

jakarta.el.ELContext:                   method public java.lang.Object
jakarta.el.ELContext.getContext(java.lang.Class<?>)
jakarta.el.ELContext:                   method public void
jakarta.el.ELContext.putContext(java.lang.Class<?>,java.lang.Object)
jakarta.el.StandardELContext:           method public java.lang.Object
jakarta.el.StandardELContext.getContext(java.lang.Class<?>)
jakarta.el.StandardELContext:           method public void
jakarta.el.StandardELContext.putContext(java.lang.Class<?>,java.lang.Object)

Added Methods :

jakarta.el.ELContext:                   method public java.lang.Object
jakarta.el.ELContext.getContext(java.lang.Class)
jakarta.el.ELContext:                   method public void
jakarta.el.ELContext.putContext(java.lang.Class,java.lang.Object)
jakarta.el.StandardELContext:           method public java.lang.Object
jakarta.el.StandardELContext.getContext(java.lang.Class)

Preface

110    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



jakarta.el.StandardELContext:           method public void
jakarta.el.StandardELContext.putContext(java.lang.Class,java.lang.Object)
`

The failure above is a little strange, isn't it?  Why are there missing  methods?
Why are there added methods?
The failure means that the `java.lang.Object
jakarta.el.ELContext.getContext(java.lang.Class)` method needs a signature change
from `getContext(Class key)` to `getContext(Class<?> key)`.  The same correction is
needed for the other identified methods as well.

[NOTE]
=======================================================================

Refer to link:debug.html#GBFUV[Chapter 8, "Debugging Test Problems"] for
additional debugging information.

=======================================================================

[[GJLGQ]][[backend-database-setup]]

5.4.21 Backend Database Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The following sections address special backend database setup
considerations:

* link:#GJLIB[Setup Considerations for MySQL]
* link:#GJLHU[Setup Considerations for MS SQL Server]

[[GJLIB]][[setup-considerations-for-mysql]]

5.4.21.1 Setup Considerations for MySQL
+++++++++++++++++++++++++++++++++++++++

The Jakarta Persistence API (formerly JPA) tests require delimited identifiers for
the native query tests. If you are using delimited identifiers on MySQL,
modify the `sql-mode` setting in the `my.cnf` file to set the
ANSI_QUOTES option. After setting this option, reboot the MySQL server.
Set the option as shown in this example:

[source,oac_no_warn]
----
sql-mode="STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION,ANSI_QUOTES"
----

[[GJLHU]][[setup-considerations-for-ms-sql-server]]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    111



5.4.21.2 Setup Considerations for MS SQL Server
+++++++++++++++++++++++++++++++++++++++++++++++

If your database already exists and if you use a case-sensitive
collation on MS SQL Server, execute the following command to modify the
database and avert errors caused by case-sensitive collation:

[source,oac_no_warn]
----
ALTER DATABASE ctsdb
COLLATE Latin1_General_CS_AS ;
----

[NOTE]
=======================================================================

You need to generate your own deployment plan for each module type,
using the deployment tool that comes with your Jakarta Platform, Enterprise
Edition server.

=======================================================================

[[GEYPB]][[using-the-javatest-harness-configuration-gui]]

5.5 Using the JavaTest Harness Configuration GUI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can use the JavaTest harness GUI to modify general test settings and
to quickly get started with the default TCK test environment. After
familiarizing yourself with these basic configuration settings, you will
probably want to continue with the instructions in link:#GEXPP[Modifying
Environment Settings for Specific Technology Tests].

[[GEYNM]][[basic-configuration-overview]]

5.5.1 Basic Configuration Overview
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In order for the JavaTest harness to execute the test suite, it requires
information about how your computing environment is configured.

The JavaTest harness requires two types of configuration information:

. Test environment: This is data used by the tests. For example, the
path to the Java runtime, how to start the product being tested, network
resources, and other information required by the tests in order to run.
This information does not change frequently and usually stays constant

Preface

112 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

from test run to test run.

. Test parameters: This is information used by the JavaTest harness to
run the tests. Test parameters are values used by the JavaTest harness
that determine which tests in the test suite are run, how the tests
should be run, and where the test reports are stored. This information
often changes from test run to test run.

When you execute the JavaTest harness software for the first time, the
JavaTest harness displays a Welcome dialog box that guides you through
the initial startup configuration.

* If it is able to open a test suite, the JavaTest harness displays a
Welcome to JavaTest dialog box that guides you through the process of
either opening an existing work directory or creating a new work
directory as described in the JavaTest online help.

* If the JavaTest harness is unable to open a test suite, it displays a
Welcome to JavaTest dialog box that guides you through the process of
opening both a test suite and a work directory as described in the
JavaTest documentation.

Once the JavaTest harness GUI is displayed, whenever you choose Run
Tests and then Start to begin a test run, the JavaTest harness
determines whether all of the required configuration information has
been supplied:

* If the test environment and parameters have been completely
configured, the test run starts immediately.

* If any required configuration information is missing, the
configuration editor displays a series of questions asking you the
necessary information. This is called the configuration interview. When
you have entered the configuration data, you are asked if you wish to
proceed with running the test.

[[GEYOD]][[the-configuration-interview]]

5.5.2 The Configuration Interview
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To configure the JavaTest harness to run the Jakarta EE 10 Platform TCK tests,
complete the following steps. Note that you only need to complete these
steps the first time you start the JavaTest harness. After you complete
these steps, you can either run all or a subset of the tests, as
described in link:using.html#GBFWO[Chapter 7, "Executing Tests"].

. Change to the `<TS_HOME>/bin` directory and start the JavaTest test

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 113

harness:
+
[source,oac_no_warn]

cd <TS_HOME>/bin
ant gui

+
The Welcome screen displays.

. Click *File*, then click *Create Work Directory* to create a new work
directory. +
If you already have a working directory you want to use, click *File*,
then click *Open Work Directory* instead. +
At this point, the JavaTest harness is preconfigured to run the basic
TCK tests.

. If you want to run the test suite at this time using your current
configuration settings, select *Run Tests* from the main menu, then select
Start. +
The default tests are executed with the default configuration settings. +
If you do not want to run the test suite at this time, continue with the
steps below to modify your test configuration.

. Select *Configure* from the main menu, then select *Edit Configuration*. +
The *Configuration Welcome* screen displays.

. Click *Next* (right arrow). +
You are prompted to specify one or more configuration files that contain
information about your test environment. By default, this file is
`<TS_HOME>/bin/ts.jte`.

. Accept the default configuration file and click *Next*. +
You are prompted to specify a test environment.

. Select either `ts_unix` or `ts_win32`, and then click *Next*. +
Choose `ts_unix` if you are running the tests in a Unix or Linux
environment; choose `ts_win32` if you are running the tests under
Windows. +
After making your selection and clicking *Next*, you are prompted to
specify whether you want to run all or a subset of the test suite.

. Specify whether you want to run all or a subset of the tests, and
then click *Next*. +
Select *Yes* to run a subset of the tests; select *No* to run all tests. +
If you select *Yes*, proceed to the next step. If you select *No*, skip to
Step 10.

Preface

114 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

. Select the tests you want to run from the displayed test tree, and
then click *Next*. +
You can select entire branches of the test tree, or use `Ctrl+Click` or
`Shift+Click` to select multiple tests or ranges of tests, respectively.

. Specify whether you want to use an exclude list, and then click
Next. +
Select Yes to use an exclude list; select No to not use an exclude list. +
If you select *Yes*, proceed to the next step. If you select *No*, skip to
Step 13.

. Specify the exclude list you want to use, and then click *Next*. +
Select `initial` to use the default list; select `custom` to use a
custom list. +
If you select `custom`, proceed to the next step. If you select
`initial`, skip to Step 13.

. Specify the custom exclude list file to use, and then click *Next*.

. Click *Done* to accept and save your configuration settings. +
You are prompted to specify the location in which you want to save your
configuration settings.

. Specify the file in which you want to save your configuration
settings, and then click *Save File*. +
You are returned to the JavaTest main window.

. If you want to run the test suite at this time using your current
configuration settings, select Run Tests from the main menu, then select
Start. +
The default tests are executed with the settings you specified.

Setup and Configuration for Testing with the Jakarta EE 10 Web Profile
===

[[GJRHB]][[setup-and-configuration-for-testing-with-the-jakarta-ee-10-web-profile]]

6 Setup and Configuration for Testing with the Jakarta EE 10 Web Profile

This chapter describes how to configure the Jakarta EE 10 Platform TCK test suite to
work with your Jakarta EE 10 Web Profile test environment. It is recommended
that you first set up the testing environment using the Jakarta EE 10 Web
Profile CI and then with your Jakarta EE 10 Web Profile server.

[[GLSEL]][[configuring-the-jakarta-ee-10-web-profile-test-environment]]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 115

6.1 Configuring the Jakarta EE 10 Web Profile Test Environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The instructions in this section and in
link:config.html#GEWWA[Configuring Your Application Server as the VI]
step you through the configuration process for the Solaris, Microsoft
Windows, and Linux platforms.

[[GJWED]][[to-run-tests-against-a-jakarta-ee-10-web-profile-implementation]]

6.1.1 To Run Tests Against a Jakarta EE 10 Web Profile Implementation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The Jakarta EE 10 Platform TCK is the Technology Compatibility Kit (TCK) for the
Jakarta
Platform, Enterprise Edition as well as the Jakarta EE 10 Web Profile.
Implementations of the full Jakarta Platform, Enterprise Edition must pass
all of the tests as defined by Jakarta EE 10 Platform TCK Rules in
link:rules.html#GBFSN[Chapter 2, "Procedure for Jakarta Platform, Enterprise
Edition 10 Certification"].

Implementations of the Jakarta EE 10 Web Profile must run the tests that
verify requirements defined by the Jakarta EE 10 Web Profile Specification.
These tests are defined by the Rules in link:rules-wp.html#GJJPZ[Chapter
3, "Procedure for Jakarta Platform, Enterprise Edition 10 Web Profile
Certification"]. These requirements are a subset of the tests contained
in the Jakarta EE 10 Platform TCK test suite. The test suite provides a mechanism
whereby only those tests for the Jakarta EE 10 Web Profile will be run. The
following steps explain how to use this mechanism.

1.  Set the `javaee.level` property to `web` in the
`<TS_HOME>/bin/ts.jte` file.
+
[source,oac_no_warn]
----
javaee.level=web
----
+
This setting will only allow WAR files (that is, no EAR files) to be
passed to the Deployment Porting Package. This is the minimal set of
signature requirements that vendors must support for Web Profile.
Specifying a javaee.level of "web" with nothing else implies there are
NO additional technologies existing within the vendors implementation.
Again, "web" only covers REQUIRED technologies for the Jakarta EE 10 Web
Profile.
2.  Set the `javaee_web_profile` keyword in one of the following ways:
* In batch mode, change to a test directory and execute the following

Preface

116    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



command:
+
[source,oac_no_warn]
----
ant -Dkeywords=javaee_web_profile runclient
----
+
Only tests that are required by the Jakarta EE 10 Web Profile will be run. +

[NOTE]
=======================================================================

If you start a test run in a test directory that contains no Jakarta EE 10
Web Profile tests, the test run will be aborted and the test harness
will report that no tests were found.

=======================================================================

* In the JavaTest GUI, open the test suite and perform the following
steps:
1.  Select View, then select Filters, then select CurrentConfiguration.
2.  Select Configure, then select ChangeConfiguration, then select
Keywords.
3.  In the Keywords dialog, select the Select Tests that Match check
box, specify the `javaee_web_profile` keyword in the field, then click
Done. +
Only those tests that are valid in the Jakarta EE 10 Web Profile will be
enabled in the test tree.

[[GBFWO]][[executing-tests]]

7 Executing Tests
-----------------

The Jakarta EE 10 Platform TCK uses the JavaTest harness to execute the tests in the
test suite. For detailed instructions that explain how to run and use
JavaTest, see the JavaTest User's Guide and Reference.

This chapter includes the following topics:

* link:#GFADX[Jakarta EE 10 Platform TCK Operating Assumptions]
* link:#GBFUZ[Starting JavaTest]
* link:#GFACS[Validating Your Test Configuration]
* link:#GBFWM[Running a Subset of the Tests]
* link:#GBFVK[Test Reports]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    117



[NOTE]
=======================================================================

The instructions in this chapter assume that you have installed and
configured your test environment as described
inlink:install.html#GBFTP[Chapter 4, "Installation,"] and
link:config.html#GBFVV[Chapter 5, "Setup and Configuration,"]
respectively.

=======================================================================

[[GFADX]][[jakarta-ee-10-platform-tck-operating-assumptions]]

7.1 Jakarta EE 10 Platform TCK Operating Assumptions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following are assumed in this chapter:

* Jakarta EE 10 CI is installed and configured as described in this guide.
* Detailed configuration will vary from product to product. In this guide, we provide
details
for configuring the Jakarta EE CI, Eclipse GlassFish 6.1. If you are using another
CI, refer to that
product's setup and configuration documentation.
* Java SE 8 software is correctly installed and configured on the host
machine.
* Jakarta EE 10 Platform TCK is installed and configured as described in this guide.
* Implementations of the technologies to be tested are properly
installed and configured.

[[GBFUZ]][[starting-javatest]]

7.2 Starting JavaTest
~~~~~~~~~~~~~~~~~~~~~

There are two general ways to run Jakarta EE 10 Platform TCK using the JavaTest
harness software:

* Through the JavaTest GUI
* From the command line in your shell environment

Running the JavaTest harness from JavaTest GUI is recommended for
initial configuration procedures, for validating your configuration, for
selecting tests to run, and for general ease-of-use when running tests
and viewing test reports.

Preface

118    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



Running the JavaTest harness from the command line is useful in headless
server configurations, and for running tests in batch mode.

[NOTE]
=======================================================================

The `build.xml` file in `<TS_HOME>/bin` contains the various Ant
targets for the Jakarta EE 10 Platform TCK test suite

=======================================================================

[[GBFWH]][[to-start-javatest-in-gui-mode]]

7.2.1 To Start JavaTest in GUI Mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1.  Set the `TS_HOME` environment variable to the directory in which the
Jakarta EE 10 Platform TCK is installed.
2.  Change to the `<TS_HOME>/bin` directory.
3.  Copy <TS_HOME>/bin/ts.jte.jdk11 as <TS_HOME>/bin/ts.jte for JakartaEE 10.
Ensure that the `ts.jte` file contains information relevant to your
setup. +
Refer to link:config.html#GBFVV[Chapter 5, "Setup and Configuration,"]
for detailed configuration instructions.
4.  Execute the `ant gui` target to start the JavaTest GUI: +
[source,oac_no_warn]
----
ant gui
----
Using the JavaTest GUI to run TCK tests is described later in this
guide. For detailed information about using the JavaTest interface, see
the JavaTest User's Guide. +

[NOTE]
=======================================================================

The forward and reverse keywords are available to filter the interop
and/or rebuildable tests during a selected test run when running tests
in the following directory only:

[source,oac_no_warn]
----
<TS_HOME>/src/com/sun/ts/tests/interop
----

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    119



Forward tests are interop tests that run from the Vendor Implementation
to the Compatible Implementation, as well as rebuildable tests that run
only against the Vendor Implementation. Reverse tests (with test names
ending in `_reverse`) are interop tests that run from the Compatible
Implementation to the Vendor Implementation, as well as rebuildable
tests that run only against the Compatible Implementation.

To set one of these keywords in the Javatest GUI, select the Configure
menu item, then select Change Configuration, then select Keywords, and
set the appropriate keyword.

When one of these keywords has been set, executing tests in the
directories above causes only those tests that match the keyword to be
run. This can be useful when trying to debug failures with a particular
test configuration. Note, however, for certification all tests in both
directions must pass.

=======================================================================

[[GFAEF]][[to-start-javatest-in-command-line-mode]]

7.2.2 To Start JavaTest in Command-Line Mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1.  Set the `TS_HOME` environment variable to the directory in which
Jakarta EE 10 Platform TCK was installed.
2.  Change to any subdirectory under `<TS_HOME>/src/com/sun/ts/tests`.
3.  Ensure that the `ts.jte` file contains information relevant to your
setup. +
Refer to link:config.html#GBFVV[Chapter 5, "Setup and Configuration,"]
for detailed configuration instructions.
4.  Execute the `runclient` Ant target to start the JavaTest: +
[source,oac_no_warn]
----
ant runclient
----
This runs all tests in the current directory and any subdirectories.

[[GCMCU]]

===== Example 7-1 Running the Jakarta EE 10 Platform TCK Signature Tests

To run the Jakarta EE 10 Platform TCK signature tests, enter the following commands:

[source,oac_no_warn]
----
cd <TS_HOME>/src/com/sun/ts/tests/signaturetest/javaee

Preface

120    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



ant runclient
----

[[GCMBV]]

===== Example 7-2 Running a Single Test Directory

To run a single test directory in the `forward` direction, enter the
following commands:

[source,oac_no_warn]
----
cd <TS_HOME>/src/com/sun/ts/tests/jaxws/api/jakarta_xml_ws/Dispatch
ant -Dkeywords=forward runclient
----

[[GCMCA]]

===== Example 7-3 Running a Subset of Test Directories

To run a subset of test directories in the `reverse` direction, enter
the following commands:

[source,oac_no_warn]
----
cd <TS_HOME>/src/com/sun/ts/tests/jaxws/api
ant -Dkeywords=reverse runclient
----

[[GFACS]][[validating-your-test-configuration]]

7.3 Validating Your Test Configuration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[[GFADI]][[to-validate-your-configuration-in-gui-mode]]

7.3.1 To Validate Your Configuration in GUI Mode
^^

1. Start the JavaTest GUI and step through the basic configuration
steps, if required, as described in link:config.html#GEYOD[Section 5.5.2,
"The Configuration Interview."]
2. In the JavaTest GUI tree view, expand the following directories:
`com`, `sun`, `ts`, `tests`, `samples`.
3. Highlight the `samples` directory, right-click, and choose *Execute
These Tests*. +
If a work directory has not been specified, you are prompted to specify
or create a new one.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 121

4. From the *JavaTest* main menu, select *File*, then select *Create Work
Directory*. The *Create Work Directory* dialog is displayed.
5. Locate or enter the name of the directory to which the test harness
will write temporary files (for example, `/tmp/JTWork`), and click
Create.
6. From the JavaTest main menu, select *Run Tests*, then select *Start* to
run the default tests. +
If your configuration information is incomplete, you are prompted to
supply the missing parameters. +
The JavaTest status bar grows while JavaTest tracks statistics relative
to the files done, tests found, and tests done.
7. Check the results. +
Test progress and results are displayed by the JavaTest harness.

[[GFACO]][[to-validate-your-configuration-in-command-line-mode]]

7.3.2 To Validate Your Configuration in Command-Line Mode
^^^

. Go to the `<TS_HOME>/src/com/sun/ts/tests/samples` directory.

. Start the the test run by executing the following command:
+
[source,oac_no_warn]

ant runclient

+
All sample tests will be run, and should pass.
. Generate test reports by executing the following commands:
.. Change to the `<TS_HOME>/bin` directory:
+
[source,oac_no_warn]

cd <TS_HOME>/bin

+
.. Run the `report` Ant target:
+
[source,oac_no_warn]

ant report

+
Reports are written to the report directory you specified in
`<TS_HOME>/bin/ts.jte`. If no report directory is specified, reports are
written to the `/tmp/JTreport` directory (Solaris/Linux) or
`C:\temp\JTreport` (Windows).

Preface

122 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

[[GBFWM]][[running-a-subset-of-the-tests]]

7.4 Running a Subset of the Tests
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[[GBFVT]][[to-run-a-subset-of-tests-in-gui-mode]]

7.4.1 To Run a Subset of Tests in GUI Mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1.  From the JavaTest main menu, select *Configure*, then select *Edit
Configuration*.
2.  In the Configuration Editor, select *Specify Tests to Run?* from the
option list on the left. +
You are asked whether you want to run all or a subset of the test suite.
3.  Click *Yes*, and then *Next* to run a subset of tests.
4.  Select the tests you want to run from the displayed test tree, and
then click *Done*. +
You can select entire branches of the test tree, or use `Ctrl+Click` or
`Shift+Click` to select multiple tests or ranges of tests, respectively. +
After clicking *Done*, you are returned to the JavaTest main window.
5.  Select *Run Tests*, then select *Start* to run the tests you selected.

[[GBFWK]][[to-run-a-subset-of-tests-in-command-line-mode]]

7.4.2 To Run a Subset of Tests in Command-Line Mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1.  Change to the directory containing the tests you want to run. +
For example, `<TS_HOME>/src/com/sun/ts/tests/samples`.
2.  Start the test run by executing the following command:
+
[source,oac_no_warn]
----
ant runclient
----
+
The tests in `<TS_HOME>/src/com/sun/ts/tests/samples` and its
subdirectories are run.

[[GBFVL]][[to-run-a-subset-of-tests-in-batch-mode-based-on-prior-result-status]]

7.4.3 To Run a Subset of Tests in Batch Mode Based on Prior Result
Status
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

You can run certain tests in batch mode based on the test's prior run
status by specifying the `priorStatus` system property when invoking

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    123



Ant.

Invoke `ant` with the `priorStatus` property.

The accepted values for the `priorStatus` property are any combination
of the following:

* `fail`
* `pass`
* `error`
* `notRun`

For example, you could run all Jakarta EE 10 tests with a status of failed
and error by invoking the following commands:

[source,oac_no_warn]
----
cd <TS_HOME>/src/com/sun/ts/tests/ejb
ant -DpriorStatus="fail,error" runclient
----

Note that multiple `priorStatus` values must be separated by commas.

[[sthref25]][[using-keywords-to-test-required-and-optional-technologies]]

7.5 Using Keywords to Test Required and Optional Technologies
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Jakarta EE TCK includes some tests that may be optional depending on
your implementation. For example, certain technologies are now optional
for implementations of the full Jakarta EE Platform. There are other
technologies which are optional for Web Profile implementations, but may
be implemented. If implemented, optional tests must be run and pass.
There are two mechanisms in place in the TCK which control whether or
not a given set of tests is run - the `javaee.level` property in the
`ts.jte` file (see link:#BCGBAHFF[Section 7.5.1, "Setting the
javaee.level Property"]) and keywords (see link:#BCGHGJIC[Section 7.5.2,
"Using Keywords to Create Groups and Subsets of Tests"]).

[[BCGBAHFF]][[setting-the-javaee.level-property]]

7.5.1 Setting the javaee.level Property
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The `ts.jte` file includes the `javaee.level` property. This property
serves two purposes. First, it is used to determine whether the
implementation under test is a Jakarta EE Full profile (full) or Jakarta EE
Web profile (web). Either "full" or "web" must be specified in the list

Preface

124 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

values. A setting of "full" instructs the test harness to deploy EAR
files. A setting of "web" instructs the test harness to deploy WAR
files. The `javaee.level` property is also used to help determine which
APIs in the signature tests are to be tested. The comments that precede
the property setting in the `ts.jte` file provide additional information
about setting this property.

The default setting is as follows:

[source,oac_no_warn]

javaee.level=full

[[BCGHGJIC]][[using-keywords-to-create-groups-and-subsets-of-tests]]

7.5.2 Using Keywords to Create Groups and Subsets of Tests
^^

Each test in TCK has keywords associated with it. The keywords are used
to create groups and subsets of tests. At test execution time, a user
can tell the test harness to only run tests with or without certain
keywords. This mechanism is used to select or omit testing on selected
optional technologies. The "keywords" property can be set to a set of
available keywords joined by "&" and/or "|".

To set the keywords system property at runtime, you must either pass it
on the command line via `-Dkeywords=""` or in the JavaTest GUI, by
opening the test suite and performing the following steps:

1. Select *View*, then select *Filters*, then select *CurrentConfiguration*.
2. Select *Configure*, then select *ChangeConfiguration*, then select
Keywords.
3. In the Keywords dialog, select the Select *Tests that Match* check
box, specify the desired keyword in the field, then click *Done*. +
Only tests that have been tagged with that keyword will be enabled in
the test tree.

The examples in the sections that follow show how to use keywords to run
required technologies in both the Full and Web profile, run/omit running
optional sets of tests in TCK, and run the Interoperability and
Rebuildable tests in forward and reverse directions.

[[sthref26]][[to-use-keywords-to-run-required-technologies]]

7.5.2.1 To Use Keywords to Run Required Technologies
++

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 125

[[sthref27]]

===== Example 7-4 Running Tests for Required Technologies in the Full Profile

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords=javaee runclient

Only tests that are required by the Full Profile will be run.

[[sthref28]]

===== Example 7-5 Running Tests for All Required Technologies in the Web Profile

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords=javaee_web_profile runclient

Only tests that are required by the Web Profile will be run.

[[sthref29]]

===== Example 7-6 Running All Required Tests Except Connector Tests in the Full
Profile

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords="javaee & !connector" runclient

[[sthref30]]

===== Example 7-7 Running All EJB Tests in the Full Profile

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords=ejb runclient

[[sthref31]]

===== Example 7-8 Running All EJB 3.2 Tests in the Full Profile

Preface

126 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords=ejb32 runclient

[[sthref32]]

===== Example 7-9 Running All EJB Tests in the Web Profile

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords=ejb_web_profile runclient

[[sthref33]][[to-use-keywords-to-run-optional-technologies-with-the-full-profile]]

7.5.2.2 To Use Keywords to Run Optional Technologies With the Full Profile
++

Keywords can be used to run subsets of tests from areas that are not
required by the Jakarta EE 10 platform specification. link:#BAGGCEJC[Table
7-1] lists optional subsets of tests that can be run for the Full
Profile and provides the technology-to-keyword mappings for each of the
optional areas.

[[sthref34]][[BAGGCEJC]]

===== Table 7-1 Keyword to Technology Mappings for Full Profile Optional
Subsets

[width="100%",cols="50%,50%",options="header",]
|===
|Technology |Keyword
|EJB 1.x, CMP, BMP, entity beans |`ejb_1x_optional or` `javaee_optional`
|EJB 2.x, CMP, BMP, entity beans |`ejb_2x_optional` or `javaee_optional`
|EJBQL |`javaee_optional`
|JAXR |`javaee_optional`
|===

[[sthref35]]

===== Example 7-10 Running Tests for All Optional Technologies in the Full Profile

[source,oac_no_warn]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 127

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords=javaee_optional runclient

[[sthref36]]

===== Example 7-11 Running Jakarta Registries test stage is no longer supported

[[GKKFN]][[to-use-keywords-to-run-optional-subsets-of-tests-with-the-web-profile]]

7.5.2.3 To Use Keywords to Run Optional Subsets of Tests With the Web Profile
+++

Keywords can be used to run subsets of tests from additional areas that
are not required by the Jakarta EE 10 Web Profile specification. For
example, if your server implements the Jakarta EE 10 Web Profile and the
Jakarta Connector Architecture 2.0 technology, set the keywords to
`javaee_web_profile|connector_web_profile` to enable running tests for
both areas. The command below shows how to specify these keywords to run
the tests in both areas.

[source,oac_no_warn]

ant -Dkeywords="(javaee_web_profile|connector_web_profile) runclient

link:#GLAEV[Table 7-2] lists optional subsets of tests that can be run
for the Web Profile and provides the technology-to-keyword mappings for
each of the optional areas.

[[sthref37]][[GLAEV]]

===== Table 7-2 Keyword to Technology Mappings for Web Profile Optional
Subsets

[width="100%",cols="50%,50%",options="header",]
|==================================
|Technology |Keyword
|Jakarta Connectors |`connector_web_profile`
|Jakarta Authorization (formerly JACC) |`jacc_web_profile`
|Jakarta Authentication (formerly JASPIC) |`jaspic_web_profile`
|Jakarta Mail (formerly JavaMail) |`javamail_web_profile`
|Jakarta Registries (formerly JAXR) |`jaxr_web_profile`
|Jakarta Messaging(formerly JMS) |`jms_web_profile`
|XA |`xa_web_profile`
|==================================

Preface

128 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

To add tests for other technologies, select the appropriate keyword from
link:#GLAEV[Table 7-2]. This table provides a mapping of keywords to
optional technologies (test directories) in the test suite and indicates
optional test areas for the Jakarta EE 10 Web Profile.

[[sthref38]]

===== Example 7-12 Running Tests for All Optional Technologies in the Web Profile

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords=javaee_web_profile_optional runclient

[[sthref39]]

===== Example 7-13 Running the Optional Jakarta Authorization and Authentication
Tests With All Required Web Profile Tests

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests
ant -Dkeywords="javaee_web_profile | jacc_web_profile | jaspic_web_profile" runclient

[[sthref40]][[to-use-keywords-to-run-optional-subsets-for-jakarta-enterprise-beans-
lite]]

7.5.2.4 To Use Keywords to Run Optional Subsets for Jakarta Enterprise Beans Lite
+++

Table 1-1 shows the TCK keywords you can use to test optional Jakarta Enterprise
Beans (formerly EJB) Lite
components. Components denoted with an asterisk (*) are pruned
components; components without an asterisk are not required by EJB Lite.

[[sthref41]][[sthref42]]

===== Table 7-3 TCK Keywords for Optional Jakarta Enterprise Beans Lite Components

[width="100%",cols="50%,50%",options="header",]
|===
|Component |TCK Keyword
|Message-Driven Beans |`ejb_mdb_optional`

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 129

|1x CMP/BMP Entity Beans * |ejb_1x_optional

|2x CMP/BMP Entity Beans, Remote/Home Component, Local/Home Component *
|`ejb_2x_optional`

|3x Remote |`ejb_3x_remote_optional`

|EJB QL * |`ejb_ql_optional`

|Persistent Timer Service |`ejb_persistent_timer_optional`

|Remote asyncrhonous session bean |`ejb_remote_async_optional`

|EJB Embeddable Container |`ejb_embeddable_optional`
|===

Support for the following features has been made optional in this
release:

* EJB 2.1 and earlier Entity Bean Component Contract for
Container-Managed Persistence and Bean-Managed Persistence
* Client View of an EJB 2.1 and earlier Entity Bean
* EJB QL: Query Language for Container-Managed Persistence Query Methods

[[sthref43]][[to-use-keywords-to-run-tests-in-selected-vehicles]]

7.5.2.5 To Use Keywords to Run Tests in Selected Vehicles
+++

The following vehicle keywords can be used to select or exclude the
vehicles in which tests are run:

* connectorservlet_vehicle
* ejblitesecuredjsp_vehicle
* ejbliteservlet_vehicle
* ejbliteservlet2_vehicle
* jaspicservlet_vehicle
* pmservlet_vehicle
* puservlet_vehicle
* wsservlet_vehicle
* servlet_vehicle
* jsp_vehicle
* web_vehicle
* appclient_vehicle
* wsappclient_vehicle
* ejb_vehicle
* wsejb_vehicle

Preface

130 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

These vehicles are defined in the
`<TS_HOME>/src/com/sun/ts/tests/common/vehicle` subdirectory structures.

[[sthref44]]

===== Example 7-14 Running Tests in the Jakarta Enterprise Beans (EJB) Vehicle Only

[source,oac_no_warn]

ant -Dkeywords="ejb_vehicle" runclient

[[sthref45]]

===== Example 7-15 Running Tests in Vehicles Other Than the Jakarta Enterprise Beans
Vehicle

[source,oac_no_warn]

ant -Dkeywords="!ejb_vehicle" runclient

[[sthref46]][[to-use-keywords-to-run-tests-in-forward-and-reverse-directions]]

7.5.2.6 To Use Keywords to Run Tests in Forward and Reverse Directions
++

The `forward` and `reverse` keywords can be used to filter the interop
and/or rebuildable tests during a selected test run when running tests
in one of the following directories only:

[source,oac_no_warn]

<TS_HOME>/src/com/sun/ts/tests/jaxws
<TS_HOME>/src/com/sun/ts/tests/jws
<TS_HOME>/src/com/sun/ts/tests/interop

`Forward` tests are interop tests that run from the Vendor
Implementation to the Compatible Implementation, as well as rebuildable
tests that run only against the Vendor Implementation. Reverse tests
(with test names ending in _reverse) are interop tests that run from the
Compatible Implementation to the Vendor Implementation, as well as
rebuildable tests that run only against the Compatible Implementation.

To set one of these keywords when running in command-line mode, set the
appropriate keyword using the keyword system property.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 131

[[sthref47]]

===== Example 7-16 Running Tests in the Forward Direction

[source,oac_no_warn]

ant -Dkeywords=forward runclient

[[sthref48]]

===== Example 7-17 Running Tests in the Reverse Direction

[source,oac_no_warn]

ant -Dkeywords=reverse runclient

To set one of these keywords in the Javatest GUI, select the Configure
menu item, then select Change Configuration, then select Keywords, and
set the appropriate keyword.

When one of these keywords has been set, executing tests in the
directories above causes only those tests that match the keyword to be
run. This can be useful when trying to debug failures with a particular
test configuration. Note, however, for certification all tests in both
directions must pass.

[[sthref49]][[running-interop-or-jwsjax-ws-reverse-tests]]

7.6 Running Interop or Jakarta XML Web Service Reverse Tests
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you are running Interop or XML Web Service reverse tests, which run
against the Jakarta EE 10 CI, you must start the standalone deployment
server in a separate shell on the same host as the TCK harness. The
default deployment porting implementation goes through a standalone
deployment server with a dedicated classpath. To start the standalone
deployment server, change to the `<TS_HOME>/bin` directory and execute
the `start.auto.deployment.server` Ant task.

[[sthref50]][[rebuilding-test-directories]]

7.7 Rebuilding Test Directories
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following directories require rebuilding, which is done by running

Preface

132 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

the `configure.datasource.tests` Ant target:

* `com/sun/ts/tests/ejb30/lite/packaging/war/datasource`
* `com/sun/ts/tests/ejb30/assembly/appres`
* `com/sun/ts/tests/ejb30/misc/datasource`

When the `configure.datasource.tests` Ant target is run from any
directory, it rebuilds these directories and any required
subdirectories.

The `com/sun/ts/tests/jms/ee20/resourcedefs` directory must also be
rebuilt. Run the `build.special.webservices.clients` Ant target to
rebuild the tests in this directory.

The database properties in the TCK bundle are set to Derby database. If
any other database is used, the `update.metadata.token.values` ant
target needs to be executed for metadata-complete tests.

The following directories require rebuilding:
`src\com\sun\ts\tests\appclient\deploy\metadatacomplete\testapp.`

This can be done by running the `update.metadata.token.values` Ant
target.

[[GBFVK]][[test-reports]]

7.8 Test Reports
~~~~~~~~~~~~~~~~

A set of report files is created for every test run. These report files
can be found in the report directory you specify. After a test run is
completed, the JavaTest harness writes HTML reports for the test run.
You can view these files in the JavaTest ReportBrowser when running in
GUI mode, or in the web browser of your choice outside the JavaTest
interface.

To see all of the HTML report files, enter the URL of the `report.html`
file. This file is the root file that links to all of the other HTML
reports.

The JavaTest harness also creates a `summary.txt` file in the report
directory that you can open in any text editor. The `summary.txt` file
contains a list of all tests that were run, their test results, and
their status messages.

Although you can run the Ant report target from any test directory, its
support is not guaranteed in the lower level directories. It is
recommended that you always run the report target from `<TS_HOME>/bin`,

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    133



from which reports are generated containing information about which
tests were or were not run.

[[GBFWD]][[creating-test-reports]]

7.8.1 Creating Test Reports
^^^^^^^^^^^^^^^^^^^^^^^^^^^

[[GBFVH]][[to-create-a-test-report-in-gui-mode]]

7.8.1.1 To Create a Test Report in GUI Mode
+++++++++++++++++++++++++++++++++++++++++++

1.  From the JavaTest main menu, select *Report*, then select *Create
Report*. +
You are prompted to specify a directory to use for your test reports.
2.  Specify the directory you want to use for your reports, and then
click *OK*. +
Use the *Filter* list to specify whether you want to generate reports for
the current configuration, all tests, or a custom set of tests. +
You are asked whether you want to view report now.
3.  Click *Yes* to display the new report in the JavaTest ReportBrowser.

[[GBFVC]][[to-create-a-test-report-in-command-line-mode]]

7.8.1.2 To Create a Test Report in Command-Line Mode
++++++++++++++++++++++++++++++++++++++++++++++++++++

Specify where you want to create the test report.

1.  To specify the report directory from the command line at runtime,
use:
+
[source,oac_no_warn]
----
ant report -Dreport.dir="report_dir"
----
+
Reports are written for the last test run to the directory you specify.
2.  To specify the default report directory, set the `report.dir`
property in `<TS_HOME>/bin/ts.jte`. +
For example, `report.dir="/home/josephine/reports"`.
3.  To disable reporting, set the `report.dir` property to `"none"`,
either on the command line or in `ts.jte`. +
For example:
+
[source,oac_no_warn]
----

Preface

134    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



ant -Dreport.dir="none"
----

[[sthref51]]

Troubleshooting

Although you can run the `report` Ant target from any test directory,
its support is not guaranteed in the lower level directories. It is
recommended that you always run the `report` target from
`<TS_HOME)/bin`, from which reports are generated containing information
about which tests were or were not run.cc

[[GBFVB]][[viewing-an-existing-test-report]]

7.8.2 Viewing an Existing Test Report
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

[[GBFVO]][[to-view-an-existing-report-in-the-javatest-report-browser]]

7.8.2.1 To View an Existing Report in the JavaTest Report Browser
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

1.  From the JavaTest main menu, select Report, then select Open Report. +
You are prompted to specify the directory containing the report you want
to open.
2.  Select the report directory you want to open, and then click Open. +
The selected report set is opened in the JavaTest Report Browser.

[[GBFWB]][[to-view-an-existing-report-in-a-web-browser]]

7.8.2.2 To View an Existing Report in a Web Browser
+++++++++++++++++++++++++++++++++++++++++++++++++++

Use the Web browser of your choice to view the `report.html` file in the
report directory you specified from the command line or in `ts.jte`.

The current report directory is displayed when you run the `report`
target.

[[GBFUV]][[debugging-test-problems]]

8 Debugging Test Problems
-------------------------

There are a number of reasons that tests can fail to execute properly.
This chapter provides some approaches for dealing with these failures.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    135



Note that most of these suggestions are only relevant when running the
test harness in GUI mode. This is a dummy change and will be reverted.

This chapter includes the following topics:

* link:#GBFYP[Overview]
* link:#GBFVF[Test Tree]
* link:#GBFWI[Folder Information]
* link:#GBFVP[Test Information]
* link:#GBFVZ[Report Files]
* link:#GBFYF[Configuration Failures]

[[GBFYP]][[overview]]

8.1 Overview
~~~~~~~~~~~~

The goal of a test run is for all tests in the test suite that are not
filtered out to have passing results. If the root test suite folder
contains tests with errors or failing results, you must troubleshoot and
correct the cause to satisfactorily complete the test run.

* Errors: Tests with errors could not be executed by the JavaTest
harness. These errors usually occur because the test environment is not
properly configured.
* Failures: Tests that fail were executed but had failing results.

The Test Manager GUI provides you with a number of tools for effectively
troubleshooting a test run. See the JavaTest User's Guide and JavaTest
online help for detailed descriptions of the tools described in this
chapter.

[[GBFVF]][[test-tree]]

8.2 Test Tree
~~~~~~~~~~~~~

Use the test tree in the JavaTest GUI to identify specific folders and
tests that had errors or failing results. Color codes are used to
indicate status as follows:

* Green: Passed
* Blue: Test Error
* Red: Failed to pass test
* White: Test not run
* Gray: Test filtered out (not run)

[[GBFWI]][[folder-information]]

Preface

136    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



8.3 Folder Information
~~~~~~~~~~~~~~~~~~~~~~

Click a folder in the test tree in the JavaTest GUI to display its tabs.

Choose the Error and the Failed tabs to view the lists of all tests in
and under a folder that were not successfully run. You can double-click
a test in the lists to view its test information.

[[GBFVP]][[test-information]]

8.4 Test Information
~~~~~~~~~~~~~~~~~~~~

To display information about a test in the JavaTest GUI, click its icon
in the test tree or double-click its name in a folder status tab. The
tab contains detailed information about the test run and, at the bottom
of the window, a brief status message identifying the type of failure or
error. This message may be sufficient for you to identify the cause of
the error or failure.

If you need more information to identify the cause of the error or
failure, use the following tabs listed in order of importance:

* Test Run Messages contains a Message list and a Message section that
display the messages produced during the test run.

* Test Run Details contains a two-column table of name/value pairs
recorded when the test was run.

* Configuration contains a two-column table of the test environment
name/value pairs derived from the configuration data actually used to
run the test.

[NOTE]
=======================================================================

You can set `harness.log.traceflag=true` in `<TS_HOME>/bin/ts.jte` to
get more debugging information. In a terminal window, you can also set
an environment variable `HARNESS_DEBUG=true` to display more debugging
information.

=======================================================================

[[GBFVZ]][[report-files]]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    137



8.5 Report Files
~~~~~~~~~~~~~~~~

Report files are another good source of troubleshooting information. You
may view the individual test results of a batch run in the JavaTest
Summary window, but there are also a wide range of HTML report files
that you can view in the JavaTest ReportBrowser or in the external
browser or your choice following a test run. See
link:using.html#GBFVK[Test Reports] for more information.

[[GBFYF]][[configuration-failures]]

8.6 Configuration Failures
~~~~~~~~~~~~~~~~~~~~~~~~~~

Configuration failures are easily recognized because many tests fail the
same way. When all your tests begin to fail, you may want to stop the
run immediately and start viewing individual test output. However, in
the case of full-scale launching problems where no tests are actually
processed, report files are usually not created (though sometimes a
small `harness.trace` file in the report directory is written).

When aborting a test run, consider the following:

* If you abort a test run when running the JavaTest harness in GUI mode,
the GUI tools automatically cleans up your environment for the next test
run. This cleanup includes undeploying any components or applications
that may deployed or registered with the Application Server.

* If you abort a test run in command-line mode (by pressing Ctrl+C),
your environment might not be left in a clean state, causing potential
failures in subsequent test runs. In such cases, you may need to perform
the following procedure to restore your environment to a clean state.

To restore your environment after aborting a test run in command-line
mode, perform these steps.

.  Log in to the Eclipse GlassFish 6.1 Application Server with the `asadmin` command.

.  List all registered components with the `asadmin list-components`
command.
.  Undeploy any listed components related to your test run with the
`asadmin undeploy` listed_component command.

[[GFAHF]][[troubleshooting]]

Preface

138    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



9 Troubleshooting
-----------------

This chapter explains how to debug test failures that you could
encounter as you run the Jakarta Platform, Enterprise Edition Compatibility
Test Suite.

[[GFAUR]][[common-tck-problems-and-resolutions]]

10 Common TCK Problems and Resolutions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This section lists common problems that you may encounter as you run the
Jakarta Platform, Enterprise Edition Test Compatibility Kit software on
the Jakarta Platform, Enterprise Edition CI, Eclipse GlassFish 6.1. It also proposes
resolutions
for the problems, where applicable.

* Problem: +
The following exception may occur when a Jakarta EE 10 Platform TCK test tries to
write a very long tracelog: +
[source,oac_no_warn]

java.lang.StringIndexOutOfBoundsException: String
index out of range:
-13493
at java.lang.String.substring(String.java:1525)
at java.lang.String.substring(String.java:1492)
at javasoft.sqe.javatest.TestResult$Section
$WritableOutputBuffer.write(TestResult.java:650)
at java.io.Writer.write(Writer.java:153)
at java.io.PrintWriter.write(PrintWriter.java: 213)
at java.io.PrintWriter.write(PrintWriter.java: 229)
at java.io.PrintWriter.print(PrintWriter.java: 360)
at java.io.PrintWriter.println(PrintWriter.java:497)
at javasoft.sqe.javatest.lib.ProcessCommand
$StreamCopier.run(ProcessCommand.java:331)

The execution of the test will either fail or hang. +
Resolution: +
Set the `-Djavatest.maxOutputSize=`nnn system parameter in the
`runclient` and/or `gui` targets in the `<TS_HOME>/bin/build.xml` file
to a value that is higher than the default setting of `100,000` on the
JavaTest VM.
* Problem: +
When you start the Jakarta Platform, Enterprise Edition CI, Eclipse GlassFish 6.1 on
Windows by using the `javaee -verbose` command, the system may not find

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 139

the specified path and could display one of the following errors: +
[source,oac_no_warn]

"Verify that JAVA_HOME is set correctly"
"Verify that JAVAEE_HOME is set correctly"

Resolution: +
Set `JAVA_HOME` to the path where the version of Java being used was
installed and set `JAVAEE_HOME` to the location of the Jakarta Platform,
Enterprise Edition installation directory.
* Problem: +
If the `cts.jar` and the `tsharness.jar` files are not loadable by the
extension classloader of your Jakarta Platform, Enterprise Edition server,
the following exception will be displayed in the window where the server
was started when you attempt to run the tests: +
[source,oac_no_warn]

java.lang.NoClassDefFoundError: com/sun/cts/util
RemoteLoggingInitException

Resolution: +
Ensure that the `cts.jar` and `tsharness.jar` files can be loaded by the
extension class loader of your Jakarta Platform, Enterprise Edition server.

[[GFAGN]][[support]]

9.2 Support
~~~~~~~~~~~

Jakarta EE is a community sponsored and community supported project. If you need
additional
assistance, you can reach out to the specific developer community. You will find the
list of all Eclipse EE4J projects at `https://projects.eclipse.org/projects/ee4j`.
All the sub-projects
are listed. Each project page has details regarding how to contact thir developer
community.

[[GFAON]][[building-and-debugging-tests]]

10 Building and Debugging Tests
-------------------------------

For final certification and branding, all tests must be run through the
JavaTest test harness. However, you can execute different Ant targets
during your build and debug cycle. The following sections describe how

Preface

140    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



to use Ant with the following targets to rebuild, list, and run tests:

* `runclient`
* `clean`
* `build`
* `ld`, `lld`, `lc`, `llc`, `pd`, `pc`

Implementers can only run the version of the tests provided with the CTS
for certification, except in the case of rebuildable tests.

This chapter includes the following topics:

* link:#GFATJ[Configuring Your Build Environment]
* link:#GFAPW[Building the Tests]
* link:#GFARS[Running the Tests]
* link:#GFATN[Listing the Contents of dist/classes Directories]
* link:#GFATK[Debugging Service Tests]

[[GFATJ]][[configuring-your-build-environment]]

10.1 Configuring Your Build Environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Complete the following steps to set up your environment to build,
deploy, and run the TCK tests using Ant. The following example is for
the Solaris platform:

1. Set the following environment variables in your shell environment to
use the build infrastructure that comes with the TCK:
* `TS_HOME` to the directory in which the Jakarta EE 10 Platform TCK software is
installed.
* `TS_HOME/bin` to your `PATH` in your command shell.
* C Shell: +
[source,oac_no_warn]

setenv PATH ${TS_HOME}/bin:${PATH}

Bourne Shell: +
[source,oac_no_warn]

PATH=${TS_HOME}/bin:${PATH}
export PATH

* `JAVA_HOME` to the directory in which the Java SE 8 or 11 software is
installed.
* `JAVAEE_HOME` to the directory in which the Jakarta Platform, Enterprise
Edition Compatible Implementation (CI) is installed.
2. Unset `ANT_HOME`, if it is currently set in your environment.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 141

3. Change to the `<TS_HOME>/bin` directory and verify that the `ts.jte`
file has the following properties set:
* `webserver.home`: the directory in which the CI Web Server is
installed
* `webserver.host`: the host on which the CI Web server is running
* `webserver.port`: the port on which the CI Web server is running
* `javaee.home.ri`: the directory in which the Jakarta Platform, Enterprise
Edition CI is installed for reference to the packager tool used by the
build infrastructure
* `ts.classpath`: required classes needed for building/running the TCK

[[GFAPW]][[building-the-tests]]

10.2 Building the Tests
~~~~~~~~~~~~~~~~~~~~~~~

To build the Jakarta EE 10 Platform TCK tests using Ant, complete the following
steps:

1.  To build a single test directory, type the following: +
[source,oac_no_warn]
----
cd <TS_HOME>/src/com/sun/ts/tests/test_dir
ant clean build
----
This cleans and builds the tests in the directory specified for
test_dir.
2.  To list the classes directory for this test that was built, type the
following: +
[source,oac_no_warn]
----
ant lc
----
or +
[source,oac_no_warn]
----
ant llc
----
3.  To list the distribution directory of archives for this test that
was built, type the following: +
[source,oac_no_warn]
----
ant pd
----
or +
[source,oac_no_warn]
----
ant pc

Preface

142    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



----

[[GFARS]][[running-the-tests]]

10.3 Running the Tests
~~~~~~~~~~~~~~~~~~~~~~

To run the Jakarta EE 10 Platform TCK tests using Ant, use one of the following
procedures.

[[GFAOW]][[to-run-a-single-test-directory]]

10.3.1 To Run a Single Test Directory
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To run a single test directory, type the following:

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests/test_dir
ant runclient

This runs all tests in test_dir.

[[GFARF]][[to-run-a-single-test-within-a-test-directory]]

10.3.2 To Run a Single Test Within a Test Directory
^^^

To run a single test within a test directory, type the following:

[source,oac_no_warn]

cd <TS_HOME>/src/com/sun/ts/tests/test_dir
ant runclient -Dtest=test_name

This runs only the test_name in the test_dir test directory. To show all
the tests that can be run from a particular test directory, change to
the directory and execute the `list.tests` Ant task. The actual test
name displays to the right of the pound sign (#), which follows the
fully qualified name of the client class.

[[GFATN]][[listing-the-contents-of-distclasses-directories]]

10.4 Listing the Contents of dist/classes Directories
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    143



You can use various Ant targets to list the contents of corresponding
`dist/classes` directories from the `src` directory without leaving the
`src` directory. All listings are sorted by modification time, with the
most recent modification listed first. Output is redirected to `more`.
The format may vary on Windows and Unix. Ant does not support changing
directory into the `dist/classes` directories, but you can copy and
paste the first line of the output, which is the target path.

The Ant list targets are as follows:

* `ld`: Lists the contents of the current test's dist directory
* `lld`: Provides a long listing of the contents of the current test's
dist directory
* `lc`: Lists the contents of the current test's classes directory
* `llc`: Provides a long listing of the contents of the current test's
classes directory
* `pd`: Starts a new shell placed into the current test's dist directory
* `pc`: Starts a new shell placed into the current test's classes
directory

If you run these targets in a directory that is not under the `src`
directory, they will list the contents of the current directory.

[NOTE]
=======================================================================

`pc`, `lc`, and `llc` also support the `-Dbuild.vi` property for listing
the rebuildable tests. The rebuildable tests are located under
`<TS_HOME>/classes_vi_built` instead of `<TS_HOME>/classes`.

=======================================================================

The following listing shows sample output for the Ant `lc` target.

[source,oac_no_warn]
----
cd $TS_HOME/src/com/sun/ts/tests/samples/ejb/ee/simpleHello
ant lc
<TS_HOME>/classes/com/sun/ts/tests/samples/ejb/ee/simpleHello

----------------------------------------------------------------
Hello.class
HelloClient.class
HelloEJB.class
HelloHome.class

Preface

144    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



ant -Dbuild.vi=true lc
<TS_HOME>/classes_vi_built/com/sun/ts/tests/samples/ejb/ee/simpleHello

----------------------------------------------------------------
Hello.class
HelloClient.class
HelloEJB.class
HelloHome.class
----

[[GFATK]][[debugging-service-tests]]

10.5 Debugging Service Tests
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Jakarta EE 10 Platform TCK service tests test the compatibility of the Jakarta
Platform, Enterprise Edition Service APIs: Jakarta Mail, JDBC, Jakarta Messaging,
Jakarta Transactions,
Jakarta XML Web Services, Jakarta Web Services Metadata, Jakarta Annotations. The
test suite contains sets of
tests that the JavaTest harness, in conjunction with the Jakarta EE 10 Platform TCK
harness extensions, runs from different Jakarta Platform, Enterprise
Edition containers (Jakarta Enterprise Beans, Jakarta Server Pages, Jakarta Servlet,
and application
client). The test suite wraps each of these tests inside generic
components, called vehicles. Each Jakarta EE 10 Platform TCK service test has been
set up to run in a default set of vehicles. Each technology's
specification determines this set. When run as part of the certification
process, all service API tests must pass in their default vehicle set.

Refer to the `<TS_HOME>/src/vehicle.properties` file to for a list the
default vehicle sets for the Jakarta EE 10 Platform TCK service API tests.

To help you debug service API tests, the test suite provides a mechanism
that allows for fine-grained control over which tests you can run in
specific vehicles. When you override the default vehicle set for a
particular set of service tests, the new set of vehicles must be a
subset of the valid vehicle set for that set of tests. If the new set is
not a subset of the default set, the test suite will use the default
set.

[NOTE]
===

You can only use this mechanism for debugging purposes. For
certification, you must run using the default set of vehicles.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 145

===

[[GFASE]][[examples]]

10.5.1 Examples
^^^^^^^^^^^^^^^

[[GFATY]]

===== Example 10-1 Restricting the JDBC Test Run

To restrict the JDBC test run to the servlet and Jakarta Server Pages vehicles only,
set
the following system property in the `<TS_HOME>/bin/build.xml` file for
the Ant `gui` or `runclient` targets:

[source,oac_no_warn]

<sysproperty key="tests_jdbc_ee.service_eetest.vehicles"
 value="servlet jsp"/>

Before you run the test or tests, you should temporarily rename the file
`<TS_HOME>/src/testsuite.jtd`.

Note that you must remove these properties before you run the Jakarta EE 10
TCK test suite for certification.

[[GFARW]][[obtaining-additional-debugging-information]]

10.5.2 Obtaining Additional Debugging Information
^^^

When running the JavaTest harness in command-line mode, you can obtain
additional debugging information by setting the `HARNESS_DEBUG`
environment variable, as follows:

[source,oac_no_warn]

setenv HARNESS_DEBUG=true

Subsequent runs with the Ant `runclient` command generate additional
debugging information.

You can also generate additional test run information by seting the

Preface

146 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

`<TS_HOME>/bin/ts.jte` `harness.log.traceflag` property as follows:

[source,oac_no_warn]

harness.log.traceflag=true

[[GFATG]][[implementing-the-porting-package]]

11 Implementing the Porting Package

Some functionality in the Jakarta Platform, Enterprise Edition platform is
not completely specified by an API. To handle this situation, the Jakarta
EE test suite defines a set of interfaces in the
`com.sun.cts.porting` package, which serve to abstract any
implementation-specific code. The CTS also provides implementations of
these interfaces to work with the Jakarta Platform, Enterprise Edition CI.

You must create your own implementations of the porting package
interfaces to work with your particular Jakarta Platform, Enterprise
Edition server environment. You also need to create a deployment plan
for each deployable component (EAR, EJB JAR, WAR, and RAR files) in the
test suite as defined by the Jakarta Platform, Enterprise Edition platform.

[[GFASD]][[overview]]

11.1 Overview
~~~~~~~~~~~~~

The Jakarta Platform, Enterprise Edition CI uses a set of
module-name-with-extension`.sun-`standard-deployment-desc-component-prefix`.xml`
files that are associated with each deployable component. A CTS
`DeploymentInfo` object parses the contents of several runtime XML
files: `sun-application_1_4-0.xml`, `sun-application-client_1_4-0.xml`,
`sun-ejb-jar_2_1-0.xml`, and `sun-web-app_2_4-0.xml`, and makes their
content available to create deployment plans by means of the
`getDeploymentPlan()` method.

To use specific implementations of these classes, you simply modify the
following entries in the `porting class .1` section of the `ts.jte`
environment file to identify the fully-qualified class names:

[source,oac_no_warn]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    147



----
porting.ts.deploy2.class.1=[vendor-deployment-class]
porting.ts.login.class.1=[vendor-login-class]
porting.ts.url.class.1=[vendor-url-class]
porting.ts.jms.class.1=[vendor-jms-class]
porting.ts.HttpsURLConnection.class.1=[vendor-httpsURLConnection-class]
----

The `<TS_HOME>/src/com/sun/ts/lib/porting` directory contains the
interfaces and `Factory` classes for the porting package.

[NOTE]
=======================================================================

You must not modify any of the CTS Release 10 TCK source code. Create your
own implementations of these interfaces and point to them in the
appropriate section of the `ts.jte` file.

=======================================================================

Note the change to the deployment porting property above. It has changed
to be `deploy2`. This is because there is a new deployment porting
interface because of the standardization of a deployment API in Java
Platform, Enterprise Edition. Any functionality that is still not
addressed by this API is part of the new interface
com.sun.ts.lib.porting.TSDeploymentInterface2.

Make sure your porting class implementations meet the following
requirements:

* Implement the following porting interfaces:

** `TSDeploymentInterface2`

** `TSLoginContextInterface`

** `TSURLInterface`

** `TSJMSAdminInterface`

** `TSHttpsURLConnectionInterface`

* Include the implementation of the previous interfaces in the
classpaths of JavaTest, the test clients, and the test server
components:

Preface

148    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



** In the `ts.harness.classpath` property in the `<TS_HOME>/bin/ts.jte`
file

** In the `CLASSPATH` variable of the `command.testExecute` and
`command.testExecuteAppClient` properties in the `ts.jte` file

** In the classpath of your Jakarta Platform, Enterprise Edition server

Note that because the JavaTest VM calls certain classes in the CTS
porting package directly, porting class implementations are not
permitted to exit the VM (for example, by using the `System.exit` call).

[[GFAUG]][[porting-package-apis]]

11.2 Porting Package APIs
~~~~~~~~~~~~~~~~~~~~~~~~~

The following sections describe the API in the Jakarta EE 10 CTS porting
package. The implementation classes used with the Jakarta Platform,
Enterprise Edition CI are located in the
`<TS_HOME>/src/com/sun/ts/lib/implementation/sun/javaee` directory. You
are encouraged to examine these implementations before you create your
own.

Detailed API documentation for the porting package interfaces is
available in the `<TS_HOME>/docs/api` directory. The API included in
this section are:

* link:#GFASM[TSDeploymentInterface2 is removed]
* link:#GKLJO[Ant-Based Deployment Interface]
* link:#GFASI[TSJMSAdminInterface]
* link:#GFATH[TSLoginContextInterface]
* link:#GFATO[TSURLInterface]
* link:#GFASJ[TSHttpsURLConnectionInterface]

[[GFASM]][[tsdeploymentinterface2-is-removed]]

11.2.1 TSDeploymentInterface2 is removed
^^
TSDeploymentInterface2 + TSDeployment2 are no longer supported since
the Jakarta Deployment spec is removed.
Please use the `TSDeploymentInterface` instead.
The interface `TSDeploymentInterface`,
which uses only the standard Deployment APIs defined by the Jakarta
Platform, Enterprise Edition platform. The following properties are
still in the `ts.jte` file to reflect this and should not be changed:

[[GKLJO]][[ant-based-deployment-interface]]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 149

11.2.2 Ant-Based Deployment Interface
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In addition to the Java-based deployment porting interfaces, Jakarta EE 10
CTS introduces an Ant-based porting interface as well. The Java-based
interface is still used for deployment/undeployment during test runs.
The Ant-based interface is used when you want to only deploy/undeploy
archives associated with a subdirectory of tests. The Ant-based
deployment interface is used by the following:

* The `build.special.webservices.clients` target in the
`${ts.home}/bin/build.xml` file +
This target deploys archives to your server implementation and then
builds the client classes that use those archives. You must run this
target before you run the tests under the
`${ts.home}/src/com/sun/ts/tests/webservices12/specialcases` directory.
* The `deploy` and `undeploy` targets in each test subdirectory under
the `${ts.home}/src/com/sun/ts/tests` directory +
To use these targets, which are useful for debugging, you must provide
an Ant-based deployment implementation.

[[GKLJF]][[creating-your-own-ant-based-deployment-implementation]]

11.2.2.1 Creating Your Own Ant-based Deployment Implementation
++

The Ant-based deployment implementation for the Jakarta EE 10 CI is under
`${ts.home}/bin/xml/impl/glassfish` directory. To create your own
implementation, create a `deploy.xml` file under the
`${ts.home}/bin/xml/impl/<vendor-name>` directory. Within the file,
create and implement the -deploy and -undeploy targets.

See `${ts.home}/bin/xml/impl/glassfish/deploy.xml` to see how these
targets are implemented for the Jakarta EE 10 CI.

[NOTE]
===

There is also a Java-based implementation of TSDeploymentInterface
(`com.sun.ts.lib.implementation.sun.javaee.glassfish.AutoDeployment`).
This implementation, which leverages the Jakarta EE 10 CI implementation of
the Ant-based deployment interface, calls the Ant targets
programmatically.

===

Preface

150 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

[[GFASI]][[tsjmsadmininterface]]

11.2.3 TSJMSAdminInterface
^^^^^^^^^^^^^^^^^^^^^^^^^^

Jakarta Messaging-administered objects are implementation-specific. For this reason,
the creation of connection factories and destination objects have been
set up as part of the porting package. Each Jakarta Platform, Enterprise
Edition implementation must provide an implementation of the
`TSJMSAdminInterface` to support their own connection factory,
topic/queue creation/deletion semantics.

The `TSJMSAdmin` class acts as a `Factory` object for creating concrete
implementations of `TSJMSAdminInterface`. The concrete implementations
are specified by the `porting.ts.jms.class.1` and
`porting.ts.jms.class.2` properties in the `ts.jte` file.

If you wish to create the Jakarta Messaging-administered objects prior to executing
any tests, you may use the default implementation of
`TSJMSAdminInterface`, `SunRIJMSAdmin.java`, which provides a null
implementation. In the case of the Jakarta Platform, Enterprise Edition CI Eclipse
GlassFish 6.1,
the Jakarta Messaging administered objects are created during the execution of the
`config.vi` Ant target.

There are two types of Jakarta Messaging-administered objects:

. A `ConnectionFactory`, which a client uses to create a connection with
a JMS provider
. A `Destination`, which a client uses to specify the destination of
messages it sends and the source of messages it receives

[[GFATH]][[tslogincontextinterface]]

11.2.4 TSLoginContextInterface
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The `TSLoginContext` class acts as a `Factory` object for creating
concrete implementations of `TSLoginContextInterface`. The concrete
implementations are specified by the `porting.ts.login.class.1` property
in the `ts.jte` file. This class is used to enable a program to login as
a specific user, using the semantics of the Jakarta Platform, Enterprise
Edition CI. The certificate necessary for certificate-based login is
retrieved. The keystore file and keystore password from the properties
that are specified in the `ts.jte` file are used.

[[GFATO]][[tsurlinterface]]

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 151

11.2.5 TSURLInterface
^^^^^^^^^^^^^^^^^^^^^

The `TSURL` class acts as a `Factory` object for creating concrete
implementations of `TSURLInterface`. The concrete implementations are
specified by the `porting.ts.url.class.1` property in the `ts.jte` file.
Each Jakarta Platform, Enterprise Edition implementation must provide an
implementation of the `TSURLInterface` to support obtaining URL strings
that are used to access a selected Web component. This implementation
can be replaced if a Jakarta Platform, Enterprise Edition server
implementation requires URLs to be created in a different manner. In
most Jakarta Platform, Enterprise Edition environments, the default
implementation of this class can be used.

[[GFASJ]][[tshttpsurlconnectioninterface]]

11.2.6 TSHttpsURLConnectionInterface
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The `TSHttpsURLConnection` class acts as a `Factory` object for creating
concrete implementations of `TSHttpsURLConnectionInterface`. The
concrete implementations are specified by the
`porting.ts.HttpsURLConnection.class.1` and `.2` properties in the
`ts.jte` file.

You must provide an implementation of `TSHttpsURLConnectionInterface` to
support the class `HttpsURLConnection`.

[NOTE]
===

The `SunRIHttpsURLConnection` implementation class uses
`HttpsURLConnection` from Java SE 8.

===

[[GFAVR]][[a-common-applications-deployment]]

A Common Applications Deployment

TODO: figure out if Common Applications Deployment tests should be removed since they
cannot rely on (removed) Jakarta Deployment in EE 9.

Preface

152 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

Some tests in the test suite require the deployment of additional
applications, components, or resource archives that are located in
directories other than the test's directory. When the test harness
encounters a test that requires these additional applications,
components, or resource archives, they are passed to the
`TSDeploymentInterface2` implementation to be deployed. Because these
applications can be shared by tests in different test directories, they
are called common applications.

link:#GFAXX[Table A-1] lists the test directories and the directories
that contain the common applications that are required by the test
directories.

[[sthref52]][[GFAXX]]

===== Table A-1 Required Common Applications

[width="100%",cols="50%,50%",options="header",]
|===
|Directory Under `com/sun/ts/tests` |Directory Under `com/sun/ts/tests`
With Associated Common Applications
|`ejb/ee/tx/session` |`ejb/ee/tx/txbean`

|`ejb/ee/tx/entity/bmp` |`ejb/ee/tx/txEbean`

|`ejb/ee/tx/entity/cmp` |`ejb/ee/tx/txECMPbean`

|`ejb/ee/tx/entity/pm` |`ejb/ee/tx/txEPMbean`

|`connector/ee/localTx/msginflow` |`common/connector/whitebox`

|`connector/ee/mdb` |`connector/ee/localTx`

|`common/connector/whitebox` |`connector/ee/noTx`

|`common/connector/whitebox` |`connector/ee/xa`

|`common/connector/whitebox` |`connector/ee/connManager`

|`common/connector/whitebox` |`xa/ee`

|`compat13/connector/localTx` |`compat13/connector/whitebox`

|`compat13/connector/noTx` |`compat13/connector/whitebox`

|`compat13/connector/xa` |`compat13/connector/whitebox`

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 153

|`interop/tx/session` |`interop/tx/txbean`

|`interop/tx/entity` |`interop/tx/txEbean`

|`interop/tx/webclient` |`interop/tx/txbean`

|`ejb/ee/pm/ejbql` |`ejb/ee/pm/ejbql/schema`

|`ejb/ee/tx/session/stateful/bm/TxMDBMS_Direct`
|`ejb/ee/tx/session/stateful/bm/TxMDBMSBeans/BeanA`

|`ejb/ee/tx/session/stateful/bm/TxMDBMSBeans/BeanB`
|`ejb/ee/tx/session/stateful/bm/TxMDBMSBeans/BeanC`

|`tests/ejb/ee/tx/session/stateful/bm/TxMDBMS_Indirect`
|`ejb/ee/tx/session/stateful/bm/TxMDBMSBeans/BeanA`

|`ejb/ee/tx/session/stateful/bm/TxMDBMSBeans/BeanB`
|`ejb/ee/tx/session/stateful/bm/TxMDBMSBeans/BeanC`

|`ejb/ee/tx/session/stateful/bm/TxMDBSS_Direct`
|`ejb/ee/tx/session/stateful/bm/TxMDBSSBeans/BeanA`

|`ejb/ee/tx/session/stateful/bm/TxMDBSSBeans/BeanB`
|`tests/ejb/ee/tx/session/stateful/bm/TxMDBSSBeans/BeanC`

|`ejb/ee/tx/session/stateful/bm/TxMDBSS_Indirect`
|`ejb/ee/tx/session/stateful/bm/TxMDBSSBeans/BeanA`

|`ejb/ee/tx/session/stateful/bm/TxMDBSSBeans/BeanB`
|`ejb/ee/tx/session/stateful/bm/TxMDBSSBeans/BeanC`
|===

[[GLAEQ]][[b-jakarta-authentication-technology-notes-and-files]]

B Jakarta Authentication Technology Notes and Files

The Jakarta Authentication (formerly jaspic) technology tests are used to verify the
compatibility of an
implementer's implementation of the Jakarta Authentication 2.0 specification.

This appendix provides information about the following topics:

Preface

154 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

* link:#GLAFO[Jakarta Authentication 2.0 Technology Overview]
* link:#GLAFE[Jakarta Authentication TSSV Files]

You run the `ant enable.jaspic` command to configure the Jakarta EE 10 CI to
run the Jakarta Authentication tests. After running the Jakarta Authentication tests,
you run the
`ant disable.jaspic` command to restore the Jakarta EE 10 CI to the state it
was in before you configured it for running the Jakarta Authentication tests. This is
required because Jakarta Authentication replaces some of the Jakarta EE 10 CI's
default
system security components with TCK security components. If this change
is not reverted after the tests have been run, the CI's system security
could be left in a partially working state. The TCK security
`AuthConfigFactory` and `AuthConfigProvider`(s) are designed for
compatibility testing, not the functional completeness that one expects
from the Jakarta EE 10 CI.

[[GLAFO]][[b.1-jakarta-authentication-2.0-technology-overview]]

B.1 Jakarta Authentication 2.0 Technology Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Jakarta Authentication 2.0 specification defines a service provider
interface (SPI) by which authentication providers implementing message
authentication mechanisms can be integrated in client and server message
processing runtimes (or containers).

Jakarta EE 10 Platform TCK uses a Test Suite SPI Verifier (TSSV) to verify whether
the vendor's message processing runtimes invoke the right SPI in the
right order.

The TSSV includes test suite implementations of:

* `AuthConfigFactory`
* `AuthConfigProvider`
* `AuthConfig(Client & Server)`
* `AuthContext(client & Server)`
* `AuthenticationModules(Client & Server)`

The TSSV gets loaded into vendor's message processing runtime using one of
the following two ways as defined by the Jakarta Authentication 2.0 specification:

* By defining a property in `JAVA_HOME/jre/lib/security/java.security`
as follows:
`authconfigprovider.factory=com.sun.ts.tests.jaspic.tssv.config.TSAuthConfigFactory`

* By calling `registerConfigProvider()` method in vendor's
`AuthConfigFactory` with the following values:

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    155



** Test Suite Provider ClassName

** Map of properties

** Message Layer (such as `SOAP` or `HttpServlet`)

** Application Context Identifier

** A description of the provider

[NOTE]
=======================================================================

For the Jakarta EE 10 Platform TCK, we register more than one provider in vendor's
message processing runtime.

=======================================================================

In a typical test scenario (for each profile of Servlet or SOAP), an
application is deployed into a vendor's runtime, and a client invokes
the service. The message policies required for the secure invocations
are built into the TSSV implementations, and the runtime is analyzed to see
whether it invokes the right SPIs at the right time.

The TSSV uses Java logging APIs to log the client and server invocation into
a log file (`TSSVLog.txt`), this log file is used by the TCK tests to
validate actual logged runtime information against expected results to
ensure that the runtime is compliant. The `jaspic_util_web.war` file
contains the Jakarta Authentication log file processor, which writes output to the
`TSSVLog.txt` file. The `TSSVLog.txt` file is put into the location
defined by the `log.file.location` property in the `ts.jte` file.

[[GLAFE]][[b.2-jakarta-authentication-tssv-files]]

B.2 Jakarta Authentication TSSV Files
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following sections describe the `tssv.jar`,
`ProviderConfiguration.xml`, and `provider-configuration.dtd` files that
are used by the Jakarta Authentication TCK tests.

[[GLAGR]][[b.2.1-tssv.jar-file]]

B.2.1 tssv.jar file
^^^^^^^^^^^^^^^^^^^

Preface

156 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

The `tssv.jar` file contains classes necessary for populating your
implementation with a TCK AuthConfigFactory (ACF) as well as information
used to register TCK providers. The tssv.jar file contains the class
files for the Test Suite SPI Verifier. The `tssv.jar` file classes need
to be loaded by your implementation's runtime during startup.

[[GLADE]][[b.2.2-providerconfiguration.xml-file]]

B.2.2 ProviderConfiguration.xml file
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The format of the `ProviderConfiguration.xml` file is a test
suite-specific format. The file was designed to contain test provider
information the test suite uses to populate the ACF with a list of
providers for testing. The file needs to be copied to the location
specified in the ts.jte file by the `provider.configuration.file`
property. An edit to the `ProviderConfiguration.xml` file may be
required for your implementation. The current application context Ids
are generic and should work as is, but there could be some scenarios in
which the application Context Ids may need to be altered.

The value of the `<app-context-id>` element in the
`ProviderConfiguration.xml` file should reflect what your implementation
will use for its internal representation of the application context
identifier for a registered provider. Said differently, the test suite
registers its providers with information from the
`ProviderConfiguration.xml` file but every implementation is not
guaranteed to use the application context identifier that is used in the
call to register the configuration provider. This value of the
`<app-context-id>` element corresponds to the `appContext` argument in
the `AuthConfigFactory.registerConfigProvider()` API. The API
documentation for this method indicates that the `appContext` argument
may be used but is not guaranteed to be used.

The default `ProviderConfiguration.xml` file should work without
modification but you may need to alter the value of the
`<app-context-id>` element as previously described to accommodate the
implementation under test. You need to find the correct application
context identifier for your implementation.

You should enable two levels of logging output to get finer levels of
debugging and tracing information than is turned on by default. This is
done by setting the `traceflag` property in the `ts.jte` file and the
`HARNESS_DEBUG` environment variable to `true`. If both of these are set,
application context identifier information should appear in the debug
output.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 157

[[GLAFZ]][[b.2.3-provider-configuration.dtd-file]]

B.2.3 provider-configuration.dtd file
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The `provider-configuration.dtd` file is a DTD file that resides in the
same directory as the `ProviderConfiguration.xml` file and describes the
`ProviderConfiguration.xml` file. This file should not be edited.

[[GFAVUb]][[c-configuring-your-backend-database]]

C Configuring Your Backend Database

This appendix explains how to configure a backend database to use with a
Jakarta Platform, Enterprise Edition server being tested against the Jakarta
EE 10 TCK.

The topics included in this appendix are as follows:

* link:#GFKNA[Overview]
* link:#GFKNR[The init.<database> Ant Target]
* link:#GFKMW[Database Properties in ts.jte]
* link:#GFKOC[Database DDL and DML Files]
* link:#GFKND[CMP Table Creation]

[[GFKNA]][[c.1-overview]]

C.1 Overview
~~~~~~~~~~~~

All Jakarta Platform, Enterprise Edition servers tested against the Jakarta EE
10 TCK must be configured with a database and JDBC 4.1-compliant drivers.
Note that the Jakarta Platform, Enterprise Edition CI, Eclipse GlassFish 6.1 includes
the Apache Derby
database.

To perform interoperability testing, you need to configure two Jakarta
Platform, Enterprise Edition servers and two databases, one of which
must be the Jakarta Platform, Enterprise Edition RI with the bundled Apache Derby
database. See link:config.html#GEWSQ[Jakarta Platform, Enterprise Edition
Server Configuration Scenarios] for more information.

For the purposes of Jakarta EE 10 Platform TCK testing, all database configuration
properties required by the TCK are made in the `<TS_HOME>/bin/ts.jte`

Preface

158    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



file. The TCK `init.<`database> Ant target uses the properties you set
in `ts.jte` to generate one or more SQL statement files that are in turn
used create and populate database tables and configure procedures
required by the TCK.

The database configuration process comprises four general steps:

1.  Set database-related properties in the `<TS_HOME>/bin/ts.jte` file.
2.  Configure your Jakarta Platform, Enterprise Edition server
implementation for your database and for TCK.
3.  Start your database.
4.  Run the `init.`<database> Ant target to initialize your database for
TCK.

The procedure for configuring your Jakarta Platform, Enterprise Edition
server for your database is described in
link:config.html#GEWTQ[Configuring a Jakarta EE 10 Server]. The final step,
initializing your database for TCK by running `init.<`database> target,
is explained more in the next section.

[[GFKNR]][[c.2-the-init.database-ant-target]]

C.2 The init.<database> Ant Target
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Before your Jakarta Platform, Enterprise Edition server database can be
tested against the Jakarta EE 10 Platform TCK, the database must be initialized for
TCK by means of the Ant `init.<`database> target. For example, the
`init.javadb` Ant task is used to initialize the Apache Derby database for
TCK.

This Ant target references database properties in `ts.jte` file and
database-specific DDL and DML files to generate SQL statement files that
are read by the Jakarta EE 10 Platform TCK when you start the test suite. The DDL and
DML files are described later in this appendix, in link:#GFKOC[Database
DDL and DML Files].

The Jakarta EE 10 Platform TCK includes the following database-specific Ant targets:

* `init.cloudscape`
* `init.db2`
* `init.oracle`
* `init.oracleDD`
* `init.oracleInet`
* `init.derby`
* `init.javadb`
* `init.sybase`
* `init.sybaseInet`

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 159

* `init.mssqlserver`
* `init.mssqlserverInet`
* `init.mssqlserverDD`

Each Ant target uses a database-specific JDBC driver to configure a
backend for a specific database; for example, OracleInet/Oracle Inet
driver; OracleDD/Oracle DataDirect driver. These targets are configured
in the `<TS_HOME>/xml/initdb.xml` file.

[[GFKMW]][[c.3-database-properties-in-ts.jte]]

C.3 Database Properties in ts.jte
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Listed below are the names and descriptions for the database properties
you need to set for TCK testing.

Note that some properties take the form property`.ri`. In all cases,
properties with an `.ri` suffix are used for interoperability testing
only. In such cases, the property value applies to the Jakarta Platform,
Enterprise Edition VI server (the server you want to test) and the
property`.ri` value applies to the Jakarta Platform, Enterprise Edition CI, Eclipse
GlassFish 6.1
server. For example:

[source,oac_no_warn]
----
db.dml.file=VI_DML_filename
db.dml.file.ri=RI_DML_filename
----

The property`.ri` properties are only used in two-server configurations;
that is, when you are performing interoperability tests.

[[sthref60]][[GFKMJ]]

===== Table D-1 ts.jte Database Properties

[width="100%",cols="35%,65%",options="header",]
|=======================================================================
|Property |Description
|database`.classes` |`CLASSPATH` to JDBC driver classes.

|database`.dataSource` |DataSource driver.

|database`.dbName` |Database Name.

|database`.driver` |DriverManager driver.

Preface

160    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



|database`.password` |User password configured.

|database`.poolName` |Name of pool configured in the RI (do not
change!).

|database`.port` |Database Server port.

|database`.properties` |Additional properties required by the defined
data source for each driver configuration in `ts.jte`. You should not
need to modify this property.

|database`.server` |Database Server.

|database`.url` |URL for the TCK database; the `dbName`, `server`, and
`port` properties are automatically substituted in to build the correct
URL. You should never need to modify this property.

|database`.user` |User ID configured.

|`create.cmp.tables` |When set to `false`, the application server is
responsible for creating CMP tables at deployment of the EJB/EAR. When
set to `true`, `init.`<datbase> creates the tables used by CMP EJBs. The
SQL for the CMP tables are contained in
`<TS_HOME>/`database`/sql/`database`.ddl.cmp.sql` and
`<TS_HOME>/`database`/sql/`database`.ddl.interop.sql`.

|`db.dml.file` |Tells `init.`database which DML file to use for the VI
database; for example, `db.dml.file=${javadb.dml.file}`.

|`db.dml.file.ri` |Tells `init.`database which DML file to use for the
RI database; for example, `db.dml.file=${javadb.dml.file}`.

|`jdbc.lib.class.path` |Used by the database`.classes` properties to
point to the location of the JDBC drivers.

|`jdbc.poolName` |Configures the connection pool that will be used in
the TCK test run; for example, `jdbc.poolName=${javadb.poolName}`. Set
this property when running against the RI if using a database other than
Apache Derby.

|`password1` |Password for the JDBC/DB1 resource; for example,
`password1=${javadb.passwd}`.

|`password2` |Password for the JDBC/DB2 resource; for example,
`password2=${javadb.passwd}`.

|`password3` |Password for the JDBC/DBTimer resource; for example,

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    161



`password3=${javadb.passwd}`.

|`user1` |User name for the JDBC/DB1 resource; for example,
`user1=${javadb.user}`.

|`user2` |User name for the JDBC/DB2 resource; for example,
`user2=${javadb.user}`.

|`user3` |User name for the JDBC/DBTimer resource; for example,
`user3=${javadb.user}`.
|=======================================================================

[[GFKOC]][[c.4-database-ddl-and-dml-files]]

C.4 Database DDL and DML Files
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For each supported database type, the Jakarta EE 10 Platform TCK includes a set of
DDL and DML files in subdirectories off the `<TS_HOME>/sql` directory.
The `config.vi` and `config.ri` targets use two `ts.jte` properties,
`db.dml.file` and `db.dml.file.ri` (interop only), to determine the
database type, and hence which database-specific DML files to copy as
`<TS_HOME>/bin/tssql.stmt` and `tssql.stmt.ri` (for interop) files.

The `tssql.stmt` and `tssql.stmt.ri` files contain directives for
configuring and populating database tables as required by the TCK tests,
and for defining any required primary or foreign key constraints and
database-specific conmand line terminators.

In addition to the database-specific DML files, the Jakarta EE 10 Platform TCK
includes database-specific DDL files, also in subdirectories off
`<TS_HOME>/sql`. These DDL files are used by the `init.`database target
to create and drop database tables and procedures required by the TCK.

The SQL statements in the `tssql.stmt` and `tssql.stmt.ri` files are
read as requested by individual TCK tests, which use the statements to
locate required DML files.

The DDL and DML files are as follows:

* database`.ddl.sql`: DDL for BMP, Session Beans
* database`.ddl.sprocs.sql`: DDL for creating stored procedures
* database`.ddl.cmp.sql`: DDL for CMP Entity Beans
* database`.ddl.interop.sql`: DDL for interop tests
* database`.dml.sql`: DML used during test runs

Each DDL command in each `<TS_HOME>/sql/`database is terminated with an

Preface

162 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

ending delimiter. The delimiter for each database is defined in the
`<TS_HOME>/bin/xml/initdb.xml` file. If your configuration requires the
use of a database other than the databases that `initdb.xml` currently
supports, you may modify `initdb.xml` to include a target to configure
the database that you are using.

An example of the syntax for a database target in `initdb.xml` is shown
below:

[source,oac_no_warn]

<target name="init.sybase">
 <antcall target="configure.backend">
 <param name="db.driver" value="${sybase.driver}"/>
 <param name="db.url" value="${sybase.url}"/>
 <param name="db.user" value="${sybase.user}"/>
 <param name="db.password" value="${sybase.passwd}"/>
 <param name="db.classpath" value="${sybase.classes}"/>
 <param name="db.delimiter" value="!"/>
 <param name="db.name" value="sybase" />
 </antcall>
</target>

The database`.name` property should be added to your `ts.jte` file. The
`db.name` property is the name of a subdirectory in `<TS_HOME>/sql`.
After updating `initdb.xml`, you invoke the new target with:

[source,oac_no_warn]

ant -f <TS_HOME>/bin/xml/initdb.xml init.databasename

[[GFKND]][[c.5-cmp-table-creation]]

C.5 CMP Table Creation
~~~~~~~~~~~~~~~~~~~~~~

If the application server under test does not provide an option to
automatically create tables used by CMP Entity EJBs, the needed SQL is
provided in `<TS_HOME>/sql/`database`/`database`.cmp.sql`.

Setting the `ts.jte` property `create.cmp.tables=true` instructs the
`init.`databasename target to create the tables defined in the
`<TS_HOME>/sql/`database`/`database`.cmp.sql` file.

If you set `create.cmp.tables=false` in the `ts.jte` file, it is
expected that you will create the necessary CMP tables at deployment

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    163



time.

[[GFAVUc]][[d-ejbql-schema]]

D EJBQL Schema
--------------

The Jakarta Enterprise Beans, EJB-QL tests perform queries against a CMP 2.0 abstract
persistence
model that you deploy before you start the test runs.

Section 9.3.5, "EJB QL and SQL," in the EJB 3.1 Specification
(`http://jcp.org/en/jsr/detail?id=318`) contains a sample mapping that
shows how the Jakarta Platform, Enterprise Edition CI translates EJB QL to
SQL, which helps to clarify the EJB QL semantics.

This appendix includes information about the following topics:

* link:#GFKSI[Persistence Schema Relationships]
* link:#GFKQT[SQL Statements for CMP 1.1 Finders]

[[GFKSI]][[d.1-persistence-schema-relationships]]

D.1 Persistence Schema Relationships
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The figure, link:#GFKUU[Figure E-1], below, contains detailed
information about the persistence schema relationships.

[[GFKUU]]

===== Figure E-1 Persistence Schema Relationships
image:img/ejbschema.png["Persistence Schema Relationships"]

Note: EJB in the figure above is a references to Jakarta Enterprise Beans.

[width="100%",cols="34%,33%,33%",]
|================================
a|
AliasEJB

[source,oac_no_warn]

String id;(pk)(cmp)

Preface

164 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

String alias;(cmp)
Customer customerNoop;(cmr)
Collection customersNoop;(cmr)
Collection customers;(cmr)

Country: DVC

[source,oac_no_warn]

String name;(cmp)
String code;(cmp)

AddressEJB

[source,oac_no_warn]

String id;(pk)(cmp)
String street;(cmp)
String city;(cmp)
String state;(cmp)
String zip;(cmp)
Collection phones;(cmr)

ProductEJB

[source,oac_no_warn]

String id;(pk)(cmp)
String name;(cmp)
float price;(cmp)
int quantity;(cmp)
long partNumber;(cmp)

a|
CustomerEJB

[source,oac_no_warn]

String id;(pk)(cmp)
String name;(cmp)

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 165

Country country;(cmp)
AddressLocal home;(cmr)
AddressLocal work;(cmr)
Collection creditCards;(cmr)
Collection orders;(cmr)
Collection aliases;(cmr)
SpouseLocal spouse;(cmr)

CreditCardEJB

[source,oac_no_warn]

String id;(pk)(cmp)
String type;(cmp)
String expires;(cmp)
boolean approved;(cmp)
String number;(cmp)
OrderLocal order;(cmr)
CustomerLocal customer;(cmr)
double balance;(cmp)

InfoEJB

[source,oac_no_warn]

String id;(pk)(cmp)
String street;(cmp)
String city;(cmp)
String state;(cmp)
String zip;(cmp)
SpouseLocal spouse;(cmr)

a|
OrderEJB

[source,oac_no_warn]

String id;(pk)(cmp)
float totalPrice;(cmp)
CustomerLocal customer;(cmr)
LineItemLocalsampleLineItem;(cmr)
Collection lineItems;(cmr)
CreditCardLocal creditCard;(cmr)

Preface

166 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

LineItemEJB

[source,oac_no_warn]

String id;(pk)(cmp)
int quantity;(cmp)
OrderLocal order;(cmr)
ProductLocal product;(cmr)

PhoneEJB

[source,oac_no_warn]

String id;(pk)(cmp)
String area:(cmp)
String number;(cmp)
AddressLocal address;(cmr)

SpouseEJB

[source,oac_no_warn]

String id;(pk)(cmp)
String firstName;(cmp)
String maidenName;(cmp)
String lastName;(cmp)
String SocialSecurityNumber(cmp);
InfoLocal info;(cmr)
CustomerLocal customer;(cmr)

|================================

[[GFKQT]][[d.2-sql-statements-for-cmp-1.1-finders]]

D.2 SQL Statements for CMP 1.1 Finders
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Listed below are the SQL statements used for CMP 1.1 finders in:

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    167



* `ejb/ee/bb/entity/cmp/clientviewtest`
* `interop/ejb/entity/cmp/clientviewtest`
* `ejb/ee/bb/entity/cmp/complexpktest`
* `ejb/ee/tx/txECMPbean`

[[GFKSD]][[d.2.1-ejbeebbentitycmpclientviewtest-interopejbentitycmpclientviewtest]]

D.2.1 ejb/ee/bb/entity/cmp/clientviewtest, interop/ejb/entity/cmp/clientviewtest
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

[source,oac_no_warn]
----
<method-name>findWithinPrimaryKeyRange</method-name>
<sql>SELECT "KEY_ID" FROM "TestBeanEJBTable" WHERE "KEY_ID" BETWEEN ?1 AND ?2</sql>
<method-name>findWithinPriceRange</method-name>
<sql>SELECT "KEY_ID" FROM "TestBeanEJBTable" WHERE "PRICE" BETWEEN ?1 AND ?2</sql>
<method-name>findByName</method-name>
<sql>SELECT "KEY_ID" FROM "TestBeanEJBTable" WHERE "BRAND_NAME" = ?1</sql>
<method-name>findAllBeans</method-name>
<sql>SELECT "KEY_ID" FROM "TestBeanEJBTable"</sql>
<method-name>findByPrice</method-name>
<sql>SELECT "KEY_ID" FROM "TestBeanEJBTable" WHERE "PRICE" = ?1</sql>
<method-name>findByNameSingle</method-name>
<sql>SELECT "KEY_ID" FROM "TestBeanEJBTable" WHERE "BRAND_NAME" = ?1</sql>
----

[[GFKQU]][[d.2.2-ejbeebbentitycmpcomplexpktest]]

D.2.2 ejb/ee/bb/entity/cmp/complexpktest
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

[source,oac_no_warn]
----
<method-name>findByPrice</method-name>
<sql>SELECT "BRAND_NAME", "ID" FROM "TestBeanEJBTable" WHERE "PRICE" = ?1</sql>
<method-name>findById</method-name>
<sql>SELECT "BRAND_NAME", "ID" FROM "TestBeanEJBTable" WHERE "ID" = ?1</sql>
<method-name>findByName</method-name>
<sql>SELECT  "BRAND_NAME", "ID" FROM "TestBeanEJBTable" WHERE "BRAND_NAME" = ?1</sql>
----

[[GFKSB]][[d.2.3-ejbeetxtxecmpbean]]

D.2.3 ejb/ee/tx/txECMPbean
^^^^^^^^^^^^^^^^^^^^^^^^^^

[source,oac_no_warn]
----

Preface

168    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



<method-name>findByName</method-name>
<sql>SELECT "KEY_ID" FROM "TxECMPBeanEJBTable" WHERE "BRAND_NAME" = ?1</sql>
<method-name>findWithinPrimaryKeyRange</method-name>
<sql>SELECT "KEY_ID" FROM "TxECMPBeanEJBTable" WHERE "PRICE" BETWEEN ?1 AND ?2</sql>
<method-name>findByPrice</method-name>
<sql>SELECT "KEY_ID" FROM "TxECMPBeanEJBTable" WHERE "PRICE" = ?1</sql>
<method-name>findWithinPrimaryKeyRange</method-name>
<sql>SELECT "KEY_ID" FROM "TxECMPBeanEJBTable" WHERE "KEY_ID" BETWEEN ?1 AND ?2</sql>
----

[[GJJWH]][[e-context-root-mapping-rules-for-web-services-tests]]

E Context Root Mapping Rules for Web Services Tests
---------------------------------------------------

The context root mapping rules that are described in this appendix apply
to all of the web services test areas, including Jakarta XML Web Services (`jaxws`),
Jakarta Web Services Metadata (`jws`), `webservices`, `webservices12`, and
`webservices13`.

This appendix covers the following topics:

* link:#GJJWR[Servlet-Based Web Service Endpoint Context Root Mapping]
* link:#GJJWG[Jakarta Enterprise Bean-Based Web Service Endpoint Context Root
Mapping]

[[GJJWR]][[e.1-servlet-based-web-service-endpoint-context-root-mapping]]

E.1 Servlet-Based Web Service Endpoint Context Root Mapping
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This section describes the context root mapping for servlet-based web
services endpoints and clients. Since most of the application runtime
and Web runtime deployment descriptor files have been removed in Jakarta EE
8, the context root mapping for web archives in a Jakarta EE 10 CI becomes
the base name of the Web archive file without the file extension. For
example, the context root for the archive `web-client.war` defaults to
`web-client`.

This covers the mapping for all servlet-based web services endpoints and
clients under the Jakarta EE 10 Platform TCK test trees
Jakarta XML Web Services (`jaxws`),
Jakarta Web Services Metadata (`jws`),
webservices, webservices12, webservices13].

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 169

For example, for the Jakarta XML Web Services (`jaxws`) test directory, the context
root mapping is
as shown in the following table.

[[sthref62]][[GLRDO]]

===== Table F-1 Context Root Mapping for Jakarta XML Web Services (`jaxws`) Test
Directory

[width="80%",cols="50%,50%",options="header",]
|===
|Endpoint |Context Root Mapping
|`WSW2JDLHttpTest_web.war` |`WSW2JDLHttpTest_web`

|`WSW2JDLHttpTest_wsservlet_vehicle_web.war`
|`WSW2JDLHttpTest_wsservlet_vehicle_web`
|===

The directory listing is as follows:

[source,oac_no_warn]

% cd $TS_HOME/src/com/sun/ts/tests/jaxws/ee/w2j/document/literal/httptest
% ant ld

[echo] WSW2JDLHttpTest.ear
[echo] WSW2JDLHttpTest_web.war
[echo] WSW2JDLHttpTest_web.war.sun-web.xml
[echo] WSW2JDLHttpTest_wsappclient_vehicle.ear
[echo] WSW2JDLHttpTest_wsappclient_vehicle_client.jar
[echo] WSW2JDLHttpTest_wsappclient_vehicle_client.jar.sun-application-client.xml
[echo] WSW2JDLHttpTest_wsejb_vehicle.ear
[echo] WSW2JDLHttpTest_wsejb_vehicle_client.jar
[echo] WSW2JDLHttpTest_wsejb_vehicle_client.jar.sun-application-client.xml
[echo] WSW2JDLHttpTest_wsejb_vehicle_ejb.jar
[echo] WSW2JDLHttpTest_wsejb_vehicle_ejb.jar.sun-ejb-jar.xml
[echo] WSW2JDLHttpTest_wsservlet_vehicle.ear
[echo] WSW2JDLHttpTest_wsservlet_vehicle_web.war
[echo] WSW2JDLHttpTest_wsservlet_vehicle_web.war.sun-web.xml

For Web archives, the context root mapping becomes the base name of the
Web archive file minus the extension.

[[GJJWG]][[e.2-jakarta-enterprise-bean-based-web-service-endpoint-context-root-
mapping]]

Preface

170 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

E.2 Jakarta Enterprise Bean-Based Web Service Endpoint Context Root Mapping
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This section describes the context root mapping for Jakarta Enterprise Bean-based web
services endpoints and clients. The context root mapping for Jakarta Enterprise Bean-
based
web services and clients is based on the following mapping rules that
are used for the Jakarta EE 10 CI.

The following algorithm describes the context root mapping rules that
are used by the Jakarta EE 10 Compatible Implementation.

[source,oac_no_warn]
----
if sun-ejb-jar.xml deployment descriptor exists
    if <endpoint-address-uri> tag exists
        context root = value of <endpoint-address-uri>
    else
        if WebService.name annotation is specified on implementation bean
            context root = WSDL Service Name + / + WebService.name
        else
            context root = WSDL Service Name + / + Simple Bean Class Name
        endif
    endif
else
    if WebService.name annotation is specified on implementation bean
        context root = WSDL Service Name + / + WebService.name
    else
        context root = WSDL Service Name + / + Simple Bean Class Name
    endif
endif
----

For example, the following table shows the context root mappings for the
`webservices12/ejb/annotations` directory.

[[sthref64]][[GLRDN]]

Table F-3 Context Root Mappings

[width="100%",cols="50%,50%",options="header",]
|=======================================================================
|Test Directory |Context Root (<endpoint-address-uri>)
|`WSEjbMultipleClientInjectionTest1`
|`"WSEjbMultipleClientInjectionTest1/ejb"`

|`WSEjbMultipleClientInjectionTest2`
|`"WSEjbMultipleClientInjectionTest2/ejb"`

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    171



|`WSEjbNoWebServiceRefInClientTest`
|`"WSEjbNoWebServiceRefInClientTest/ejb"`

|`WSEjbPortFieldInjectionTest` |`"WSEjbPortFieldInjectionTest/ejb"`

|`WSEjbPortMethodInjectionTest` |`"WSEjbPortMethodInjectionTest/ejb"`

|`WSEjbSOAPHandlersTest` |`"WSEjbSOAPHandlersTest/ejb"`

|`WSEjbSOAPHandlersTest2` |`"WSEjbSOAPHandlersTest2/ejb"`

|`WSEjbWebServiceProviderTest` |`"WSEjbWebServiceProviderTest/ejb"`

|`WSEjbWebServiceRefTest2` |`"WSEjbWebServiceRefTest2/ejb"`

|`WSEjbAsyncTest` |`"WSEjbAsyncTest/ejb"`
|=======================================================================

[source,oac_no_warn]
----
--------------                      -------------------------------------
Test Directory                      Context Root = <endpoint-address-uri>
--------------                      -------------------------------------
WSEjbMultipleClientInjectionTest1   "WSEjbMultipleClientInjectionTest1/ejb"
WSEjbMultipleClientInjectionTest2   "WSEjbMultipleClientInjectionTest2/ejb"
WSEjbNoWebServiceRefInClientTest    "WSEjbNoWebServiceRefInClientTest/ejb"
WSEjbNoWebServiceRefInClientTest    "WSEjbNoWebServiceRefInClientTest/ejb"
WSEjbPortFieldInjectionTest         "WSEjbPortFieldInjectionTest/ejb"
WSEjbPortMethodInjectionTest        "WSEjbPortMethodInjectionTest/ejb"
WSEjbSOAPHandlersTest               "WSEjbSOAPHandlersTest/ejb"
WSEjbSOAPHandlersTest2              "WSEjbSOAPHandlersTest2"/ejb"
WSEjbWebServiceProviderTest         "WSEjbWebServiceProviderTest/ejb"
WSEjbWebServiceRefTest2             "WSEjbWebServiceRefTest2/ejb"
WSEjbAsyncTest                      "WSEjbAsyncTest/ejb"
----

The following table shows the two test directories under the
`webservices12/ejb/annotations` that do not specify the
`<endpoint-address-uri>` deployment tag or do not contain a Jakarta Enterprise Bean
JAR
runtime deployment descriptor file. Because of this, the context root is
calculated using the previously described formula. In both cases, the
context root is calculated as a concatenation of the WSDL Service Name,
a slash (`/`), and the Simple Bean Class Name.

[[sthref65]][[GLRCY]]

Preface

172    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



===== Table F-4 Context Root Mapping for Directories Without Endpoint Address URIs

[width="100%",cols="29%,71%",options="header",]
|=======================================================================
|Test Directory |Context Root (WSDL Service Name/Simple Bean Class Name)
|`WSEjbWebServiceRefTest1`
|`"WSEjbWebServiceRefTest1HelloService/HelloBean"`

|`WSEjbWebServiceRefWithNoDDsTest`
|`"WSEjbWSRefWithNoDDsTestHelloEJBService/WSEjbWSRefWithNoDDsTestHelloEJB"`
|=======================================================================

[source,oac_no_warn]
----
--------------
--------------------------------------------------------
Test Directory                  Context Root = <WSDL Service Name/Simple Bean Class
Name>
--------------
--------------------------------------------------------
WSEjbWebServiceRefTest1         "WSEjbWebServiceRefTest1HelloService/HelloBean"
WSEjbWebServiceRefWithNoDDsTest "WSEjbWSRefWithNoDDsTestHelloEJBService/\
                                 WSEjbWSRefWithNoDDsTestHelloEJB"
----

The context root mappings for some, but not all, tests also exist in the
DAT files under the `$TS_HOME/bin` directory. These include the
`jaxws-url-props.dat` (Jakarta XML Web Services), `jws-url-props.dat` (Jakarta Web
Services Metadata), and
`webservices12-url-props.dat` files.

Implementers can use the previously described information in their porting
implementation layer for web services.

[[CJGFHFIF]][[f-testing-a-standalone-jakarta-messaging-resource-adapter]]

F Testing a Standalone Jakarta Messaging Resource Adapter
---------------------------------------------------------

This appendix explains how to set up and configure a Jakarta EE 10 CI and
Jakarta EE 10 Platform TCK so a standalone Jakarta Messaging resource adapter can be
tested.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    173



This appendix covers the following topics:

* link:#CJGGIEEJ[Setting Up Your Environment]
* link:#CJGDJCEC[Configuring Jakarta EE 10 Platform TCK]
* link:#CJGFCJBA[Configuring a Jakarta EE 10 CI for the Standalone Jakarta Messaging
Resource Adapter]
* link:#CJGEBECH[Modifying the Runtime Deployment Descriptors for the
Jakarta Messaging MDB and Resource Adapter Tests]
* link:#CJGFHCBJ[Running the Jakarta Messaging Tests From the Command Line]
* link:#CJGCJGIH[Restoring the Runtime Deployment Descriptors for the
Jakarta Messaging MDB and Resource Adapter Tests]
* link:#CJGCDGIG[Reconfiguring Jakarta EE 10 CI for Jakarta EE 10 Platform TCK After
Testing the Standalone Jakarta Messaging Resource Adapter]

[[CJGGIEEJ]][[f.1-setting-up-your-environment]]

F.1 Setting Up Your Environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Before you can run the Jakarta Messaging TCK tests against a standalone Jakarta
Messaging Resource
Adapter using a Jakarta EE 10 CI, you must install the following
components:

* Java SE 8 or 11 software
* Jakarta EE 10 CI software such as Eclipse GlassFish 6.1
* Jakarta EE 10 Platform TCK software

Complete the following steps to set up Eclipse GlassFish 6.1 in your environment:

1. Set the following environment variables in your shell environment:
* JAVA_HOME to the directory where the Java SE 8 software has been
installed
* JAVAEE_HOME to the directory where the Jakarta EE 10 CI (Eclipse GlassFish 6.1)
software has been
installed
* TS_HOME to the directory where the Jakarta EE 10 Platform TCK software has been
installed
2. Update your PATH environment variable to include the following
directories: JAVA_HOME/bin, JAVAEE_HOME/bin, TS_HOME/bin, and
ANT_HOME/bin.

[[CJGDJCEC]][[f.2-configuring-jakarta-ee-10-platform-tck]]

F.2 Configuring Jakarta EE 10 Platform TCK
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The `ts.jte` file includes properties that must be set for testing a

Preface

174    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



standalone Jakarta Messaging Resource Adapter using the Jakarta EE 10 CI. The Jakarta
Messaging Resource
Adapter documentation in the `ts.jte` file should help you understand
what you need to set in this step of the testing process.

1.  Set the following properties in the `ts.jte` file:
* javaee.home to the location where the Jakarta EE 10 CI is installed
* Use the default value or enter a new host name for the `orb.host`
property
* Use the default value or enter a new port number for the
`orb.port`property
* `test.sa.jmsra` to true
* `jmsra.rarfile` to the location of the standalone Jakarta Messaging Resource
Adapter
RAR file
* `jmsra.jarfile` to the location of the standalone Jakarta Messaging Resource
Adapter
JAR file
* `jmsra.name` to the name of the Jakarta Messaging Resource Adapter under test
2.  Add `$\{jmsra.jarfile}` to the beginning or at the end of the
AppClient classpath: +
`APPCPATH=` list of classes and jars followed by
`$\{pathsep}$\{jmsra.jarfile}\` +
The `jmsra.jarfile`, which contains all the Jakarta Messaging Resource Adapter
classes, needs to be added to the AppClient classpath in the `ts.jte`
file. This JAR file will also be copied to the appropriate directory in
your Jakarta EE 10 environment when the `config.vi` Ant task, which is
described in the next section, is invoked. For the Jakarta EE 10 CI Eclipse GlassFish
6.1, the
file is copied to the `JAVAEE_HOME/lib` directory.

[[CJGFCJBA]][[f.3-configuring-the-jakarta-ee-8-CI-for-the-standalone-jakarta-
messaging-resource-adapter]]

F.3 Configuring a Jakarta EE 10 CI for the Standalone Jakarta Messaging Resource
Adapter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~

Invoke the config.vi Ant task to configure the Jakarta EE 10 CI, Eclipse GlassFish
6.1 for TCK 10
and the standalone Jakarta Messaging Resource Adapter:

1.  Change to the `TS_HOME/bin` directory.
2.  Execute the `config.vi` Ant task. +
The config.vi Ant task executes scripts, which configure your Jakarta EE 10
environment for TCK 10. One of the ant scripts that gets executed will
configure and deploy the standalone Jakarta Messaging Resource Adapter, copy the JAR

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE    175



file containing the classes for the standalone Jakarta Messaging Resource Adapter to
the `JAVAEE_HOME/lib` directory, create the Jakarta Messaging connector connect ion
pools and resources, and create the necessary Jakarta Messaging administration
objects. The following Ant scripts are called by the `config.vi` Ant task:
* TS_HOME/bin/xml/impl/glassfish/jmsra.xml
* TS_HOME/bin/xml/impl/glassfish/templates/create.jmsra.template +
The script TS_HOME/bin/xml/impl/glassfish/jmsra.xml calls the template
file `TS_HOME/bin/xml/impl/glassfish/templates/create.jmsra.template,`
which handles the creation of the Jakarta Messaging connector connection pools, the
Jakarta Messaging connector resources and the Jakarta Messaging administration
objects. +
These scripts are written for the standalone Generic Jakarta Messaging Resource
Adapter (GenericJMSRA) for the Jakarta EE 10 CI. If you are using a
different Jakarta EE 10 environment, you will need to rewrite these scripts
for that environment. If you are using a different standalone Jakarta Messaging
resource adapter, you will need to rewrite these scripts for that Jakarta Messaging
resource adapter.

[[CJGEBECH]][[f.4-modifying-the-runtime-deployment-descriptors-for-the-jakarta-
messaging-mdb-and-resource-adapter-tests]]

F.4 Modifying the Runtime Deployment Descriptors for the Jakarta Messaging MDB and
Resource Adapter Tests
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~

After the standalone Jakarta Messaging Resource Adapter has been configured and
deployed and the required Jakarta Messaging connector connection pools, Jakarta
Messaging connector
resources, and Jakarta Messaging administration objects have been created, the
`glassfish-ejb-jar` runtime deployment descriptor XML files must be
modified for the Jakarta Messaging MDB and Resource Adapter tests. An Ant task
handles
the modifications.

1.  Change to the `TS_HOME/bin` directory.
2.  Execute the following Ant task: +
`ant -f xml/impl/glassfish/jmsra.xml modify-jmsmdbejbxml` +

This Ant target modifies the glassfish-ejb-jar runtime deployment
descriptor XML files in the distribution directory of the Jakarta Messaging MDB and
Resource Adapter test directories that exist under
`TS_HOME/src/com/sun/ts/tests/jms/ee/mdb and
TS_HOME/src/com/sun/ts/tests/jms/ee20/ra.` +
The modified `glassfish-ejb-jar` runtime deployment descriptor XML files
exist under the +
`TS_HOME/src/com/sun/ts/tests/jms/commonee/xml/descriptors/genericra`
directory. These files are copied into the correct distribution test

Preface

176    Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE



directory under
`TS_HOME/dist/com/sun/ts/tests/jms/ee/mdb and
TS_HOME/dist/com/sun/ts/tests/jms/ee20/ra`. +
The `<mdb-resource-adapter>` information for the standalone Jakarta Messaging
Resource
Adapter being tested is added to the `glassfish-ejb-jar runtime`
deployment descriptor XML files. In the default case, the resource
adapter being tested is the Generic Jakarta Messaging Resource Adapter
(GenericJMSRA). If you are using a different Jakarta EE 10 environment, your
runtime deployment descriptor XML files will need to be vendor specific.
In this case, you will need to modify the Ant script to handle your
vendor-specific runtime deployment descriptor XML files.

[[CJGFHCBJ]][[f.5-running-the-jakarta-messaging-tests-from-the-command-line]]

F.5 Running the Jakarta Messaging Tests From the Command Line
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Run the Jakarta Messaging tests:

. Change to the `TS_HOME/src/com/sun/ts/tests/jms` directory.

. Invoke the `runclient` Ant target: +
`ant runclient`

[[CJGCJGIH]][[f.6-restoring-the-runtime-deployment-descriptors-for-the-jakarta-
messaging-mdb-and-resource-adapter-tests]]

F.6 Restoring the Runtime Deployment Descriptors for the Jakarta Messaging MDB and
Resource Adapter Tests
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~

After you run the Jakarta Messaging tests against your standalone Jakarta Messaging
Resource
Adapter, you need to restore the Jakarta Messaging MDB and Resource Adapter tests.
Jakarta EE 10 Platform TCK provides an Ant task that handles the restoration. Invoke
the following Ant task to restore the Jakarta Messaging MDB and Resource Adapter
`glassfish-ejb-jar` runtime deployment descriptor XML files to their
previous state:

. Change to the `TS_HOME/bin` directory.

. Invoke the following Ant target: +
`ant -f xml/impl/glassfish/jmsra.xml restore-jmsmdbejbxml` +

If you are using another Jakarta EE 10 environment, these runtime deployment
descriptor XML files will be vendor specific. In this case, you will
need to modify the Ant script to handle the vendor-specific runtime
deployment descriptor XML files appropriate for your environment.

Preface

Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE 177

[[CJGCDGIG]][[f.7-reconfiguring-jakarta-ee-8-CI-for-jakarta-ee-10-platform-tck-after-
testing-the-standalone-jakarta-messaging-resource-adapter]]

F.7 Reconfiguring Jakarta EE 10 CI for Jakarta EE 10 Platform TCK After Testing the
Standalone Jakarta Messaging Resource Adapter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

After you finish testing the standalone Jakarta Messaging Resource Adapter, you need
to reconfigure the Jakarta EE 10 CI before you can continue testing with
Jakarta EE 10 Platform TCK:

. Change to the `TS_HOME/bin` directory.

. Invoke the `clean.vi` Ant target: +
`ant clean.vi`
. Set the following properties in the `ts.jte` file:
* javaee.home to the location where the Jakarta EE 10 CI is installed
* Use the default value for the `orb.host` property or enter a new host
name
* Use the default value for the `orb.port` property or enter a new port
number
* `test.sa.jmsra` to false
* Unset the `jmsra.rarfile` property
* Unset the `jmsra.jarfile` property
* Reset the `jmsra.name` property to `jmsra` to refer to the Jakarta Messaging
Resource Adapter for the Jakarta EE 10 CI
. From the TS_HOME/bin directory, invoke the config.vi Ant task to
reconfigure the Jakarta EE 10 CI for Jakarta EE 10 Platform TCK: +
`ant config.vi`

Preface

178 Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

	Jakarta EE Platform, Enterprise Edition 10 Test Compatibility Kit User’s Guide, Release 10 for Jakarta EE

